Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Chem Commun (Camb) ; 60(17): 2369-2372, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38318781

ABSTRACT

Conventional methods for nitrile synthesis bring inherent environmental risks due to their reliance on oxidants and harsh reaction conditions. Meanwhile, direct electrooxidation of amines to nitriles suffers from low current density. In this study, we propose an innovative indirect electrooxidation strategy for nitrile formation, mediated by Br-/Br2, utilizing a highly efficient CoS2/CoS@Graphite Felt (GF) electrode. Notably, the anodic nitrile generation can be synergistically coupled with the cathodic hydrogen evolution reaction (HER). Through meticulous optimization of reaction parameters, we achieve an impressive 98% selectivity for octanenitrile at a current density of 60 mA cm-2 with a remarkable faradaic efficiency (FE) of 87%. Furthermore, our approach demonstrates excellent versatility, as we successfully evaluate both aliphatic and aromatic primary amines, highlighting its promising potential for practical applications in the field.

2.
RSC Med Chem ; 14(12): 2496-2508, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38107173

ABSTRACT

Protein-protein interactions (PPIs) control many essential biological pathways which are often misregulated in disease. As such, selective PPI modulators are desirable to unravel complex functions of PPIs and thus expand the repertoire of therapeutic targets. However, the large size and relative flatness of PPI interfaces make them challenging molecular targets for conventional drug modalities, rendering most PPIs "undruggable". Therefore, there is a growing need to discover innovative molecules that are able to modulate crucial PPIs. Peptides are ideal candidates to deliver such therapeutics attributed to their ability to closely mimic structural features of protein interfaces. However, their inherently poor proteolysis resistance and cell permeability inevitably hamper their biomedical applications. The introduction of a constraint (i.e., peptide cyclization) to stabilize peptides' secondary structure is a promising strategy to address this problem as witnessed by the rapid development of cyclic peptide drugs in the past two decades. Here, we comprehensively review the recent progress on stabilized cyclic peptides in targeting challenging PPIs. Technological advancements and emerging chemical approaches for stabilizing active peptide conformations are categorized in terms of α-helix stapling, ß-hairpin mimetics and macrocyclization. To discover potent and selective ligands, cyclic peptide library technologies were updated based on genetic, biochemical or synthetic methodologies. Moreover, several advances to improve the permeability and oral bioavailability of biologically active cyclic peptides enable the de novo development of cyclic peptide ligands with pharmacological properties. In summary, the development of cyclic peptide-based PPI modulators carries tremendous promise for the next generation of therapeutic agents to target historically "intractable" PPI systems.

3.
J Med Chem ; 66(1): 95-106, 2023 01 12.
Article in English | MEDLINE | ID: mdl-36580278

ABSTRACT

Therapeutic peptides have revolutionized treatment for a number of human diseases. In particular, the past two decades have witnessed rapid progress of stapled helical peptides in drug discovery. Stapled helical peptides are chemically modified and constrained in their bioactive α-helical conformation. Compared to unstabilized linear peptides, stapled helical peptides exhibit superior binding affinity and selectivity, enhanced membrane permeability, and improved metabolic stability, presenting exciting promise for targeting otherwise challenging protein-protein interfaces. In this Perspective, we summarize recent applications of high-throughput screening technologies for identification of potent stapled helical peptides with optimized binding properties. We expect to provide a broad reference to accelerate the development of stapled helical peptides as the next generation of therapeutic peptides for various human diseases.


Subject(s)
High-Throughput Screening Assays , Peptides , Humans , Protein Structure, Secondary , Peptides/pharmacology , Peptides/chemistry , Drug Discovery , Protein Conformation, alpha-Helical
4.
Am J Cancer Res ; 12(5): 2226-2248, 2022.
Article in English | MEDLINE | ID: mdl-35693088

ABSTRACT

Effective biomarkers that guide therapeutics with limited adverse effects, have emerged as attractive research topics in cancer diagnosis and treatment. Cancer-derived exosomes, a type of extracellular vesicles representing molecular signatures of cells of origin, could serve as stable reservoirs for potential biomarkers (i.e., proteins, nucleic acids) in non-invasive cancer diagnosis and prognosis. In this review, the physiological and pathological roles of exosomes and their protein components in facilitating tumorigenesis are highlighted. Exosomes carrying proteins can participate in tumor development and progression through multiple signaling pathways, including EMT, invasion and metastasis. Meanwhile, the practical applications of exosomal proteins in detecting and monitoring several solid-tumor cancers (including lung, breast, pancreatic, colorectal and prostate cancers) were also summarized. More clinically relevant, exosomal proteins play pivotal roles in transmitting oncogenic potential or resistance to therapies in recipient cells, which might further support therapeutic strategy determinations.

5.
J Pept Sci ; 28(7): e3389, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34937123

ABSTRACT

Aberrant activation of the Wnt signaling pathway has been identified in numerous types of cancer. One common feature of oncogenic Wnt regulation involves an increase in the cellular levels of ß-catenin due to interference with its constitutive ubiquitin-dependent degradation. Targeting ß-catenin has therefore emerged as an appealing approach for the treatment of Wnt-dependent cancers. Here, we report a strategy that employs multifunctional stapled peptides to recruit an E3 ubiquitin ligase to ß-catenin, thereby rescuing ß-catenin degradation by hijacking the endogenous ubiquitin-proteasome pathway. Specifically, we designed, synthesized, and evaluated a panel of multifunctional stapled peptides that have a ß-catenin binding moiety (StAx-35) covalently linked to a second stapled peptide moiety (SAH-p53-8), which is capable to interact with the E3 ubiquitin ligase MDM2. We found that in vitro these multifunctional peptides can recruit the MDM2 protein to ß-catenin and induce poly-ubiquitination on ß-catenin. In cellulo, treatment of the human colorectal cancer cell line SW480 with the multifunctional stapled peptides showed dose-dependent degradation of endogenous ß-catenin levels. In addition, a luciferase reporter assay showed that the multifunctional stapled peptides can suppress ß-catenin-mediated gene expression via the Wnt signaling pathway. Therefore, these multifunctional stapled peptides provide a unique research tool for examining the Wnt signaling pathway by targeted knockdown of ß-catenin at the protein level, and may serve as leads for potential drug candidates in the treatment of Wnt-dependent cancers.


Subject(s)
Wnt Signaling Pathway , beta Catenin , Humans , Peptides/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Ubiquitins/genetics , Ubiquitins/metabolism , beta Catenin/genetics , beta Catenin/metabolism
6.
Cell Chem Biol ; 28(5): 625-635.e5, 2021 05 20.
Article in English | MEDLINE | ID: mdl-33503403

ABSTRACT

Wnt signaling plays a central role in tissue maintenance and cancer. Wnt activates downstream genes through ß-catenin, which interacts with TCF/LEF transcription factors. A major question is how this signaling is coordinated relative to tissue organization and renewal. We used a recently described class of small molecules that binds tubulin to reveal a molecular cascade linking stress signaling through ATM, HIPK2, and p53 to the regulation of TCF/LEF transcriptional activity. These data suggest a mechanism by which mitotic and genotoxic stress can indirectly modulate Wnt responsiveness to exert coherent control over cell shape and renewal. These findings have implications for understanding tissue morphogenesis and small-molecule anticancer therapeutics.


Subject(s)
Molecular Probes/pharmacology , Protein Serine-Threonine Kinases/metabolism , Small Molecule Libraries/pharmacology , TCF Transcription Factors/antagonists & inhibitors , beta Catenin/antagonists & inhibitors , Animals , Cells, Cultured , Humans , Male , Molecular Probes/chemistry , Small Molecule Libraries/chemistry , TCF Transcription Factors/genetics , TCF Transcription Factors/metabolism , Wnt Signaling Pathway/drug effects , Xenopus , Zebrafish , beta Catenin/genetics , beta Catenin/metabolism
7.
Invest New Drugs ; 39(1): 131-141, 2021 02.
Article in English | MEDLINE | ID: mdl-32915418

ABSTRACT

Today, pancreatic cancer (PC) is a major health problem in the United States. It remains a challenge to develop efficacious clinically useful PC therapies. New avenues, based on translational approaches and innovative validated biomarkers could be a preclinical option to evaluate PC drug candidates or drug combinations before clinical trials. Herein, we describe evaluation of combination therapies by incorporating a novel pathway modulator, p53-Activator Wnt Inhibitor-2 (PAWI-2) with other FDA-approved cancer drugs that have been used in PC clinical trials. PAWI-2 is a potent inhibitor of drug-resistant PC cells that has been shown to selectively ameliorate human pancreatic cancer stem cells (i.e., hPCSCs, FGß3 cells). In the present study, we showed PAWI-2 produced therapeutic synergism with certain types of anti-cancer drugs. These drugs themselves oftentimes do not ameliorate PC cells (especially PCSCs) due to high levels of drug-resistance. PAWI-2 has the ability to rescue the potency of drugs (i.e., erlotinib, trametinib) and inhibit PC cell growth. Key molecular regulators of PAWI-2 could be used to predict synergistic/antagonistic effects between PAWI-2 and other anti-cancer drugs. Anti-cancer results showed potency could be quite accurately correlated to phosphorylation of optineurin (OPTN) in PC cells. Synergism/antagonism was also associated with inhibition of PCSC marker SOX2 that was observed in FGß3 cells. Synergism broadens the potential use of PAWI-2 as an adjunct chemotherapy in patients with PC that have developed resistance to first-line targeted therapies or chemotherapies.


Subject(s)
Antineoplastic Agents/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Pancreatic Neoplasms/pathology , Quinoxalines/pharmacology , Antineoplastic Agents/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Resistance, Neoplasm , Drug Synergism , Humans , Membrane Transport Proteins/drug effects , Neoplastic Stem Cells/drug effects , Quinoxalines/administration & dosage , SOXB1 Transcription Factors/drug effects
8.
Tissue Eng Part C Methods ; 26(11): 577-589, 2020 11.
Article in English | MEDLINE | ID: mdl-33086948

ABSTRACT

Despite considerable research effort, there is a significant need for safe agents that stimulate bone formation. Treatment of large or complex bone defects remains a challenge. Implantation of small molecule-induced human bone marrow-derived mesenchymal stromal cells (hBMSCs) on an appropriate tricalcium phosphate (TCP) scaffold offers a robust system for noninvasive therapy for spinal fusion. To show the efficacy of this approach, we identified a small molecule curcuminoid that when combined with TCP ceramic in the presence of hBMSCs selectively induced growth of bone cells: after 8- or 25-day incubations, alkaline phosphatase was elevated. Treatment of hBMSCs with curcuminoid 1 and TCP ceramic increased osteogenic target gene expression (i.e., Runx2, BMP2, Osteopontin, and Osteocalcin) over time. In the presence of curcuminoid 1 and TCP ceramic, osteogenesis of hBMSCs, including proliferation, differentiation, and mineralization, was observed. No evidence of chondrogenic or adipogenic potential using this protocol was observed. Transplantation of curcuminoid 1-treated hBMSC/TCP mixtures into the spine of immunodeficient rats showed that it achieved spinal fusion and provided greater stability of the spinal column than untreated hBMSC-TCP implants or TCP alone implants. On the basis of histological analysis, greater bone formation was associated with curcuminoid 1-treated hBMSC implants manifested as contiguous growth plates with extensive hematopoietic territories. Stimulation of hBMSCs by administration of small molecule curcuminoid 1 in the presence of TCP ceramic afforded an effective noninvasive strategy that increased spinal fusion repair and provided greater stability of the spinal column after 8 weeks in immunodeficient rats. Impact statement Bone defects only slowly regenerate themselves in humans. Current procedures to restore spinal defects are not always effective. Some have side effects. In this article, a new method to produce bone growth within 8 weeks in rats is presented. In the presence of tricalcium phosphate ceramic, curcuminoid-1 small molecule-stimulated human bone marrow-derived mesenchymal stromal cells showed robust bone cell growth in vitro. Transplantation of this mixture into the spine showed efficient spinal fusion in rats. The approach presented herein provides an efficient biocompatible scaffold for delivery of a potentially clinically useful system that could be applicable in patients.


Subject(s)
Calcium Phosphates/pharmacology , Ceramics/pharmacology , Diarylheptanoids/pharmacology , Spinal Fusion , Alkaline Phosphatase/metabolism , Animals , Calcium/metabolism , Calcium Phosphates/chemistry , Cell Differentiation/drug effects , Cell Survival/drug effects , Collagen/pharmacology , Diarylheptanoids/chemistry , Gene Expression Regulation/drug effects , Humans , Implants, Experimental , Male , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/enzymology , Minerals/metabolism , Osteogenesis/drug effects , Osteogenesis/genetics , Rats, Nude , Tissue Scaffolds/chemistry , Wnt Proteins/metabolism
9.
Sci Rep ; 10(1): 9162, 2020 06 08.
Article in English | MEDLINE | ID: mdl-32514015

ABSTRACT

Today, pancreatic cancer (PC) remains a major health problem in the US. The fact that cancer stem cells (CSCs) become enriched in humans following anti-cancer therapy implicates CSCs as key contributors to tumor dormancy, metastasis, and relapse in PC. A highly validated CSC model (FGß3 cells) was used to test a novel compound (PAWI-2) to eradicate CSCs. Compared to parental bulk FG cells, PAWI-2 showed greater potency to inhibit cell viability and self-renewal capacity of FGß3 cells. For FGß3 cells, dysregulated integrin ß3-KRAS signaling drives tumor progression. PAWI-2 inhibited ß3-KRAS signaling independent of KRAS. This is clinically relevant. PAWI-2 targeted the downstream TBK1 phosphorylation cascade that was negatively regulated by optineurin phosphorylation via a feedback mechanism. This was confirmed by TBK1 genetic knockdown or co-treatment with TBK1-specific inhibitor (MRT67307). PAWI-2 also overcame erlotinib (an EGFR inhibitor) resistance in FGß3 cells more potently than bortezomib. In the proposed working model, optineurin acts as a key regulator to link inhibition of KRAS signaling and cell cycle arrest (G2/M). The findings show PAWI-2 is a new approach to reverse tumor stemness that resensitizes CSC tumors to drug inhibition.


Subject(s)
Cell Cycle Checkpoints/drug effects , Drug Resistance, Neoplasm/drug effects , Integrin beta3/metabolism , Neoplastic Stem Cells/pathology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Proto-Oncogene Proteins p21(ras)/metabolism , Quinoxalines/pharmacology , Antineoplastic Agents , Humans , NF-kappa B/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , Tumor Cells, Cultured
10.
J Pharmacol Exp Ther ; 371(3): 703-712, 2019 12.
Article in English | MEDLINE | ID: mdl-31582422

ABSTRACT

Prostate cancer (PCa) is the second leading cause of cancer-related death for men in the United States. Approximately 35% of PCa recurs and is often transformed to castration-resistant prostate cancer (CRPCa), the most deadly and aggressive form of PCa. However, the CRPCa standard-of-care treatment (enzalutamide with abiraterone) usually has limited efficacy. Herein, we report a novel molecule (PAWI-2) that inhibits cellular proliferation of androgen-sensitive and androgen-insensitive cells (LNCaP and PC-3, respectively). In vivo studies in a PC-3 xenograft model showed that PAWI-2 (20 mg/kg per day i.p., 21 days) inhibited tumor growth by 49% compared with vehicle-treated mice. PAWI-2 synergized currently clinically used enzalutamide in in vitro inhibition of PCa cell viability and resensitized inhibition of in vivo PC-3 tumor growth. Compared with vehicle-treated mice, PC-3 xenograft studies also showed that PAWI-2 (20 mg/kg per day i.p., 21 days) and enzalutamide (5 mg/kg per day i.p., 21 days) inhibited tumor growth by 63%. Synergism was mainly controlled by the imbalance of prosurvival factors (e.g., Bcl-2, Bcl-xL, Mcl-1) and antisurvival factors (e.g., Bax, Bak) induced by affecting mitochondrial membrane potential/mitochondria dynamics. Thus, PAWI-2 utilizes a distinct mechanism of action to inhibit PCa growth independently of androgen receptor signaling and overcomes enzalutamide-resistant CRPCa. SIGNIFICANCE STATEMENT: Castration-resistant prostate cancer (CRPCa) is the most aggressive human prostate cancer (PCa) but standard chemotherapies for CRPCa are largely ineffective. PAWI-2 potently inhibits PCa proliferation in vitro and in vivo regardless of androgen receptor status and uses a distinct mechanism of action. PAWI-2 has greater utility in treating CRPCa than standard-of-care therapy. PAWI-2 possesses promising therapeutic potency in low-dose combination therapy with a clinically used drug (e.g., enzalutamide). This study describes a new approach to address the overarching challenge in clinical treatment of CRPCa.


Subject(s)
Antineoplastic Agents/pharmacology , Phenylthiohydantoin/analogs & derivatives , Piperazines/pharmacology , Prostatic Neoplasms/drug therapy , Quinoxalines/pharmacology , Animals , Apoptosis/drug effects , Aspartate Aminotransferases/blood , Benzamides , Cell Line, Tumor , Drug Synergism , Humans , Male , Mice , Nitriles , Phenylthiohydantoin/pharmacology , Prostatic Neoplasms/pathology , Tumor Suppressor Protein p53/physiology , Xenograft Model Antitumor Assays
11.
Am J Cancer Res ; 9(2): 390-405, 2019.
Article in English | MEDLINE | ID: mdl-30906636

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC), constitutes >90% of pancreatic cancers (PC) and is one of the most aggressive human tumors. Standard chemotherapies for PDAC (e.g., gemcitabine, FOLFIRINOX, etc.) has proven to be largely ineffective. Herein, we report a novel molecule (i.e., compound 1) that potently inhibits proliferation and induces apoptosis of PDAC cells. As we observed in other cancer types (i.e., colorectal, breast cancer), the effect of 1 against PDAC cells is also related to microtubule destabilization and DNA damage checkpoint activation. However, in PDAC cells, the inhibitory effect of 1 was mainly controlled by mitochondrial p53-dependent apoptosis. Compound 1 worked with cells of different p53 mutant status and affected p53 activation/phosphorylation not simply by stabilizing p53 protein but through antagonizing anti-apoptotic effects of Bcl-xL and restoring p53 to activate mitochondrial-apoptotic pathways (i.e., cytochrome c release, caspase activation and PARP cleavage). Compound 1 was more efficient than a typical PDAC combination therapy (i.e., gemcitabine with paclitaxel) and showed synergism in inhibiting PDAC cell proliferation with gemcitabine (or gemcitabine with paclitaxel). This synergism varied between different types of PDAC cells and was partially controlled by the phosphorylation of p53 on Serine15 (phospho-Ser15-p53). In vivo studies in an orthotopic syngeneic murine model showed that 1 (20 mg/kg/day, 28 days, i.p.) inhibited tumor growth by 65% compared to vehicle-treated mice. No apparent acute or chronic toxicity was observed. Thus, compound 1 utilizes a distinct mechanism of action to inhibit PC growth in vitro and in vivo and is a novel anti-PDAC compound.

12.
Bioorg Med Chem Lett ; 28(20): 3363-3367, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30201292

ABSTRACT

The Notch signaling pathway is involved in cell proliferation and differentiation, and has been recognized as an active pathway in regenerating tissue and cancerous cells. Notch signaling inhibition is considered a viable approach to the treatment of a variety of conditions including colorectal cancer, pancreatic cancer, breast cancer and metastatic melanoma. The discovery that the b-annulated dihydropyridine FLI-06 (1) is an inhibitor of the Notch pathway with an EC50 ≈ 2.5 µM prompted us to screen a library of related analogs. After structure activity studies were conducted, racemic compound 7 was identified with an EC50 = 0.36 µM. Synthesis of individual enantiomers provided (+)-7 enantiomer with an EC50 = 0.13 µM, or about 20-fold the potency of 1.


Subject(s)
Antineoplastic Agents/pharmacology , Dihydropyridines/pharmacology , Receptor, Notch1/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Dihydropyridines/chemical synthesis , Dihydropyridines/chemistry , HCT116 Cells , Humans , Molecular Structure , Quinolines/chemical synthesis , Quinolines/chemistry , Quinolines/pharmacology , Stereoisomerism
13.
Bioorg Med Chem ; 26(15): 4441-4451, 2018 08 15.
Article in English | MEDLINE | ID: mdl-30075999

ABSTRACT

For adult women in the United States, breast cancer is the most prevalent form of cancer. Compounds that target dysregulated signal transduction can be efficacious anti-cancer therapies. A prominent signaling pathway frequently dysregulated in breast cancer cells is the Wingless-related integration site (Wnt) pathway. The purpose of the work was to optimize a "hit" from a screening campaign. 76,000 compounds were tested in a Wnt transcription assay and revealed potent and reproducible "hit," compound 1. Medicinal chemistry optimization of 1 led to more potent and drug-like molecules, 19, 24 and 25 (i.e., Wnt pathway IC50 values = 11, 18 and 7 nM, respectively). The principal results showed compounds 19, 24 and 25 were potent anti-proliferative agents in breast cancer cell lines, MCF-7 (i.e., IC50 values = 10, 7 and 4 nM, respectively) and MDA-MB 231 (i.e., IC50 values = 13, 13 and 16 nM, respectively). Compound 19 synergized anti-proliferation with chemotherapeutic Doxorubicin in vitro. A major conclusion was that compound 19 enhanced anti-proliferation of Doxorubicin in vitro and in a xenograft animal model of breast cancer.


Subject(s)
Antineoplastic Agents/chemistry , Sulfonamides/chemistry , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Doxorubicin/pharmacology , Drug Synergism , Female , Humans , Mice , Mice, Nude , Structure-Activity Relationship , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , Transcription, Genetic/drug effects , Transplantation, Heterologous , Wnt Proteins/genetics , Wnt Proteins/metabolism
14.
Cancer Res ; 78(17): 5072-5083, 2018 09 01.
Article in English | MEDLINE | ID: mdl-30032112

ABSTRACT

For 2017, the estimated lifetime risk of developing colorectal cancer was 1 in 22. Even though preventative colonoscopy screening and standard-of-care surgery, radiation, and chemotherapy have decreased the death rate from colorectal cancer, new therapies are needed for metastatic colorectal cancer. Here, we developed a novel small molecule, compound 2, that inhibited proliferation and viability of human colorectal cancer cells (HCT-116, DLD-1, SW480, and 10.1). Compound 2 inhibited cell migration, invasion, and epithelial-mesenchymal transition processes and potently increased cell apoptosis in human colorectal cancer cells. Compound 2 also modulated mitotic stress signaling, leading to both inhibition of Wnt responsiveness and stabilization and activation of p53 to cause cell-cycle arrest. In mouse xenografts, treatment with compound 2 (20 mg/kg/day, i.p.) induced cell death and inhibited tumor growth more than four-fold compared with vehicle at day 34. Neither acute cytotoxicity nor toxicity in animals (up to 1,000 mg/kg, i.p.) were observed for compound 2 To our knowledge, compound 2 is the first reported potent small molecule that inhibits Wnt/ß-catenin signaling, activates p53 signaling regardless of p53 mutation status, and binds microtubules without detectable toxicity. Thus, compound 2 offers a novel mechanism of action and a new strategy to treat colorectal cancer.Significance: These findings identify a potent small molecule that may be therapeutically useful for colon cancer that works by inhibiting Wnt/ß-catenin signaling, activating p53, and binding microtubules without detectable toxicity. Cancer Res; 78(17); 5072-83. ©2018 AACR.


Subject(s)
Cell Proliferation/drug effects , Colorectal Neoplasms/drug therapy , Small Molecule Libraries/pharmacology , Tumor Suppressor Protein p53/genetics , Animals , Ataxia Telangiectasia Mutated Proteins/genetics , Cell Cycle Checkpoints/drug effects , Cell Movement/drug effects , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Epithelial-Mesenchymal Transition/drug effects , Gene Expression Regulation, Neoplastic/drug effects , HCT116 Cells , Humans , Mice , Mitosis/drug effects , Wnt Signaling Pathway/drug effects , Xenograft Model Antitumor Assays
15.
J Biol Chem ; 288(21): 14863-73, 2013 May 24.
Article in English | MEDLINE | ID: mdl-23576432

ABSTRACT

Peripheral membrane proteins can be targeted to specific organelles or the plasma membrane by differential recognition of phospholipid headgroups. Although molecular determinants of specificity for several headgroups, including phosphatidylserine and phosphoinositides are well defined, specific recognition of the headgroup of the zwitterionic phosphatidylcholine (PC) is less well understood. In cytosolic proteins the cation-π box provides a suitable receptor for choline recognition and binding through the trimethylammonium moiety. In PC, this moiety might provide a sufficient handle to bind to peripheral proteins via a cation-π cage, where the π systems of two or more aromatic residues are within 4-5 Å of the quaternary amine. We prove this hypothesis by engineering the cation-π box into secreted phosphatidylinositol-specific phospholipase C from Staphylococcus aureus, which lacks specific PC recognition. The N254Y/H258Y variant selectively binds PC-enriched vesicles, and x-ray crystallography reveals N254Y/H258Y binds choline and dibutyroylphosphatidylcholine within the cation-π motif. Such simple PC recognition motifs could be engineered into a wide variety of secondary structures providing a generally applicable method for specific recognition of PC.


Subject(s)
Bacterial Proteins/chemistry , Cell Membrane/chemistry , Phosphatidylcholines/chemistry , Receptors, Cell Surface/chemistry , Staphylococcus aureus/chemistry , Amino Acid Motifs , Amino Acid Substitution , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cations/chemistry , Cations/metabolism , Cell Membrane/genetics , Cell Membrane/metabolism , Mutation, Missense , Phosphatidylcholines/genetics , Phosphatidylcholines/metabolism , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Staphylococcus aureus/genetics , Staphylococcus aureus/metabolism
16.
Biophys J ; 104(1): 185-95, 2013 Jan 08.
Article in English | MEDLINE | ID: mdl-23332071

ABSTRACT

The enzymatic activity of secreted phosphatidylinositol-specific phospholipase C (PI-PLC) enzymes is associated with bacterial virulence. Although the PI-PLC active site has no obvious lid, molecular-dynamics simulations suggest that correlated loop motions may limit access to the active site, and two Pro residues, Pro(245) and Pro(254), are associated with these correlated motions. Whereas the region containing both Pro residues is quite variable among PI-PLCs, it shows high conservation in virulence-associated, secreted PI-PLCs that bind to the surface of cells. These regions of the protein are also associated with phosphatidylcholine binding, which enhances PI-PLC activity. In silico mutagenesis of Pro(245) disrupts correlated motions between the two halves of Bacillus thuringiensis PI-PLC, and Pro(245) variants show significantly reduced enzymatic activity in all assay systems. PC still enhanced activity, but not to the level of wild-type enzyme. Mutagenesis of Pro(254) appears to stiffen the PI-PLC structure, but experimental mutations had minor effects on activity and membrane binding. With the exception of P245Y, reduced activity was not associated with reduced membrane affinity. This combination of simulations and experiments suggests that correlated motions between the two halves of PI-PLC may be more important for enzymatic activity than for vesicle binding.


Subject(s)
Bacillus thuringiensis/cytology , Bacillus thuringiensis/enzymology , Cell Membrane/enzymology , Phosphoinositide Phospholipase C/metabolism , Amino Acid Sequence , Bacillus cereus/enzymology , Biocatalysis , Conserved Sequence , Micelles , Molecular Dynamics Simulation , Molecular Sequence Data , Motion , Mutant Proteins/metabolism , Phosphoinositide Phospholipase C/chemistry , Phosphoric Diester Hydrolases/metabolism , Phosphotransferases/metabolism , Proline/chemistry , Protein Binding , Protein Structure, Secondary , Unilamellar Liposomes/chemistry
17.
J Biol Chem ; 287(48): 40317-27, 2012 Nov 23.
Article in English | MEDLINE | ID: mdl-23038258

ABSTRACT

BACKGROUND: Bacterial phosphatidylinositol-specific phospholipase C targets PI and glycosylphosphatidylinositol-linked proteins of eukaryotic cells. RESULTS: Functional relevance of a homodimeric S. aureus PI-PLC crystal structure is supported by enzyme kinetics and mutagenesis. Nonsubstrate phosphatidylcholine increases activity by facilitating enzyme dimerization. CONCLUSION: Activating transient dimerization is antagonized by anions binding to a discrete site. SIGNIFICANCE: Interplay of protein oligomerization and anion binding controls enzyme activity. Staphylococcus aureus phosphatidylinositol-specific phospholipase C (PI-PLC) is a secreted virulence factor for this pathogenic bacterium. A novel crystal structure shows that this PI-PLC can form a dimer via helix B, a structural feature present in all secreted, bacterial PI-PLCs that is important for membrane binding. Despite the small size of this interface, it is critical for optimal enzyme activity. Kinetic evidence, increased enzyme specific activity with increasing enzyme concentration, supports a mechanism where the PI-PLC dimerization is enhanced in membranes containing phosphatidylcholine (PC). Mutagenesis of key residues confirm that the zwitterionic phospholipid acts not by specific binding to the protein, but rather by reducing anionic lipid interactions with a cationic pocket on the surface of the S. aureus enzyme that stabilizes monomeric protein. Despite its structural and sequence similarity to PI-PLCs from other Gram-positive pathogenic bacteria, S. aureus PI-PLC appears to have a unique mechanism where enzyme activity is modulated by competition between binding of soluble anions or anionic lipids to the cationic sensor and transient dimerization on the membrane.


Subject(s)
Anions/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Phosphoinositide Phospholipase C/chemistry , Phosphoinositide Phospholipase C/metabolism , Staphylococcus aureus/enzymology , Bacterial Proteins/genetics , Binding Sites , Dimerization , Kinetics , Phosphoinositide Phospholipase C/genetics , Protein Binding , Staphylococcus aureus/chemistry , Staphylococcus aureus/genetics , Substrate Specificity
18.
Biochemistry ; 51(12): 2579-87, 2012 Mar 27.
Article in English | MEDLINE | ID: mdl-22390775

ABSTRACT

Staphylococcus aureus secretes a phosphatidylinositol-specific phospholipase C (PI-PLC) as a virulence factor that is unusual in exhibiting higher activity at acidic pH values than other enzymes in this class. We have determined the crystal structure of this enzyme at pH 4.6 and pH 7.5. Under slightly basic conditions, the S. aureus PI-PLC structure closely follows the conformation of other bacterial PI-PLCs. However, when crystallized under acidic conditions, a large section of mobile loop at the αß-barrel rim in the vicinity of the active site shows ~10 Å shift. This loop displacement at acidic pH is the result of a titratable intramolecular π-cation interaction between His258 and Phe249. This was verified by a structure of the mutant protein H258Y crystallized at pH 4.6, which does not exhibit the large loop shift. The intramolecular π-cation interaction for S. aureus PI-PLC provides an explanation for the activity of the enzyme at acid pH and also suggests how phosphatidylcholine, as a competitor for Phe249, may kinetically activate this enzyme.


Subject(s)
Catalytic Domain , Phosphoinositide Phospholipase C/chemistry , Phosphoinositide Phospholipase C/metabolism , Staphylococcus aureus/enzymology , Hydrogen-Ion Concentration , Inositol Phosphates/chemistry , Inositol Phosphates/metabolism , Models, Molecular , Mutagenesis, Site-Directed , Mutation , Phosphoinositide Phospholipase C/genetics , Solubility , Staphylococcal Infections/metabolism , Staphylococcus aureus/pathogenicity , Substrate Specificity , Water/chemistry
20.
Anal Sci ; 25(8): 1019-23, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19667480

ABSTRACT

The interaction between double-strand calf thymus gland DNA (ds-DNA) and Al(III) was studied by using differential pulse voltammetry (DPV) at a hanging mercury drop electrode (HMDE), Raman spectrometry and circular dichroism (CD) spectra. It was shown that at neutral pH ds-DNA did not produce any cathodic peak at the HMDE in the potential window from -550 to -2000 mV vs. SCE. However, in the presence of Al(III), a cathodic peak was generated at about -1660 mV, which is ascribed to a reduction of adenine and cytosine residues of single denatured DNA (sd-DNA). It was concluded that ds-DNA was completely denatured to sd-DNA by Al(III) at a neutral pH. The apparent denaturing kinetic velocity constants of ds-DNA by Al(III) were derived from linear increases of the cathodic peak currents with time. When [Al(III)]x[OH(-)](3) > or = 2 x 10(-26), the precipitation of Al(OH)(3) was observed and identified by the Raman spectrum, and inductively coupled plasma atomic emission spectrometry (ICP-AES). CD spectra showed that the B-type of structure conformations of ds-DNA and related sd-DNA did not change with the increment of Al(III) from 5.0 x 10(-7) to 1.0 x 10(-5) M, but the corresponding absorption strengths increased. The related physiological significances and possible applications of the observations were considered.


Subject(s)
Aluminum/chemistry , DNA/chemistry , Nucleic Acid Conformation , Animals , Cattle , Electrochemistry , Hydrogen-Ion Concentration , Mercury/chemistry , Nucleic Acid Denaturation , Thymus Gland/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...