Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 926: 171537, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38460684

ABSTRACT

This study proposed and examined a new process flowsheet for treating neutral mine drainage (NMD) from an open-pit gold mine. The process consisted of three sequential stages: (1) in situ hydrotalcite (HT) precipitation; (2) low-cost carbon substrate driven microbial sulfate reduction; and (3) ferrosol reactive barrier for removing biogenic dissolved hydrogen sulfide (H2S). For concept validation, laboratory-scale columns were established and operated for a 140-days period with key process performance parameters regularly measured. At the end, solids recovered from various depths of the ferrosol column were analysed for elemental composition and mineral phases. Prokaryotic microbial communities in various process locations were characterised using 16S rRNA gene sequencing. Results showed that the Stage 1 HT-treatment substantially removed a range of elements (As, B, Ba, Ca, F, Zn, Si, and U) in the NMD, but not nitrate or sulfate. The Stage 2 sulfate reducing bioreactor (SRB) packed with 70 % (v/v) Eucalyptus woodchip, 1 % (w/v) ground (<1 mm) dried Typha biomass, and 10 % (w/v) NMD-pond sediment facilitated complete nitrate removal and stable sulfate removal of ca. 50 % (50 g-SO4 m-3 d-1), with an average H2S generation rate of 10 g-H2S m-3d-1. The H2S-removal performance of the Stage 3 ferrosol column was compared with a synthetic amorphous Fe-oxyhydroxide-amended sand control column. Although both columns facilitated excellent (95-100 %) H2S removal, the control column only enabled a further ca. 10 % sulfate reduction, giving an overall sulfate removal of 56 %. In contrast, the ferrosol enabled an extra 99.9 % sulfate reduction in the SRB effluent, leading to a near complete sulfate removal. Overall, the process successfully eliminated a range of metal/metalloid contaminants, nitrate, sulfate (2500 mg-SO4 L-1 in the NMD to <10 mg-SO4 L-1 in the final effluent) and H2S (>95 % removal). Further optimisation is required to minimise release of ferrous iron from the ferrosol barrier into the final effluent.


Subject(s)
Aluminum Hydroxide , Hydrogen Sulfide , Magnesium Hydroxide , RNA, Ribosomal, 16S , Nitrates , Sulfates/chemistry , Bioreactors
2.
J Environ Manage ; 334: 117422, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36801680

ABSTRACT

Bioelectrochemical systems (BES) are increasingly being explored as an auxiliary unit process to enhance conventional waste treatment processes. This study proposed and validated the application of a dual-chamber bioelectrochemical cell as an add-on unit for an aerobic bioreactor to facilitate reagent-free pH-correction, organics removal and caustic recovery from an alkaline and saline wastewater. The process was continuously fed (hydraulic retention time (HRT) of 6 h) with a saline (25 g NaCl/L) and alkaline (pH 13) influent containing oxalate (25 mM) and acetate (25 mM) as the target organic impurities present in alumina refinery wastewater. Results suggested that the BES concurrently removed the majority of the influent organics and reduced the pH to a suitable range (9-9.5) for the aerobic bioreactor to further remove the residual organics. Compared to the aerobic bioreactor, the BES enabled a faster removal of oxalate (242 ± 27 vs. 100 ± 9.5 mg/L.h), whereas similar removal rates (93 ± 16 vs. 114 ± 23 mg/L.h, respectively) were recorded for acetate. Increasing catholyte HRT from 6 to 24 h increased the caustic strength from 0.22% to 0.86%. The BES enabled caustic production at an electrical energy demand of 0.47 kWh/kg-caustic, which is a fraction (22%) of the electrical energy requirement for caustic production using conventional chlor-alkali processes. The proposed application of BES holds promise to improve environmental sustainability of industries in managing organic impurities in alkaline and saline waste streams.


Subject(s)
Caustics , Wastewater , Bioreactors , Oxalates , Waste Disposal, Fluid/methods
3.
Environ Technol ; : 1-12, 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36314060

ABSTRACT

Bioelectrochemical systems (BES) are emerging environmental biotechnology for recovering ammonia from waste streams. It has been tested extensively for treating ammonium-rich wastewater. This study examined the suitability of BES to facilitate carbon removal and ammonium extraction from a low ammonium liquor (3.7 mM) that mimics municipal wastewater, and concomitant production of high-purity hydrogen gas, which could potentially be harnessed as a fuel or internally recycled for ammonia stripping. Results showed that a two-chamber cation exchange membrane-equipped BES enabled a high hydrogen yield (22.8 m3 H2 m-3 d-1; > 98% cathodic efficiency) and chemical oxygen demand (COD) removal (80%; 2.43 kg COD m-3 d-1 at a hydraulic retention time of 4.4 h). However, for the treatment of wastewater, the system demanded high energy (2.3 kWh kg COD-1; 152 kWh kg-1 N removed) and base for pH adjustment. The technology may be more suitable for recovering ammonium from wastewaters with molar ammonium to BOD ratio closer to the desired stoichiometric ratio of four, and for waste streams containing sufficient alkalinity or pH-buffering capacity, eliminating the need for dosing cation-bearing alkali.

4.
J Environ Manage ; 302(Pt A): 113915, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34695674

ABSTRACT

Dosing alum to remove phosphorus (P) from wastewater is a common practice. However, the dosing-location and quantity of alum required to meet P discharge limits are vaguely defined. As such, utilities overdose alum to avoid noncompliance, but this leads to wastage and costs. This study aimed to address this issue through a long-term evaluation of an alum-assisted full-scale intermittently decanted extended aeration (IDEA) plant. Specifically, the effects of relocating alum dosing from a low P containing IDEA-tank to a bioselector containing elevated P concentrations were examined. The plant is fitted with two IDEA-tanks, each retrofitted with a bioselector at the inlet end. Over 359 d, key parameters (dissolved oxygen (DO), NH4+-N, NO2--N, NO3--N, PO43--P) were quantified to account for the effects of switching alum-dosing into the bioselector and varying dosages (429, 643, 1072 and 1286 g-Al3+ per treatment cycle). Results indicated a 52% reduction of alum usage with no impact on discharge limit (≤0.85 mg-P/L). As expected, a failure to maintain DO setpoint (1.6 mg/L) reduced both NH4+-N and PO43--P removal. Increasing alum dosage simply could not alleviate this problem, but maintenance of DO at least 85% of setpoint enabled effective rectification. This 15% DO buffer zone offers operators an opportunity to rectify imminent operational failures related to DO, prior to escalating alum dosage. An operational framework to manage DO related failures is proposed. Overall, this study offers insights on how to cost effectively apply alum and manage DO failures to achieve P discharge limits in IDEA plants.


Subject(s)
Sewage , Waste Disposal, Fluid , Alum Compounds , Oxygen/analysis , Phosphorus
5.
J Hazard Mater ; 424(Pt C): 127539, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34800843

ABSTRACT

Bioreduction can facilitate oxyanions removal from wastewater. However, simultaneously removing selenate, nitrate and sulfate and recovering high-purity elemental selenium (Se0) from wastewater by a single system is difficult and may lead to carcinogenic selenium monosulfide (SeS) formation. To solve this issue, a two-stage biological fluidized bed (FBR) process with ethanol dosing based on oxidation-reduction potential (ORP) feedback control was developed in this study. FBR1 performance was first evaluated at various ORP setpoints (between -520 and -360 mV vs. Ag/AgCl) and elevated sulfate concentration. Subsequently, ethanol-fed FBR2 was used to reduce sulfate from FBR1 effluent, followed by an aerated sulfide oxidation reactor (SOR). At - 520 mV≤ ORPs≤ -480 mV, FBR1 removed 100 ±â€¯0.1% nitrate and 99.7 ±â€¯0.3% selenate without sulfate reduction. At ORPs ≥ -440 mV, selenate reduction was incomplete, whereas nitrate removal remained stable. Se0 recovery efficiency from FBR1 effluent was 37.5% with 71% Se purity. FBR2 converted 86% of the remaining sulfate in FBR1 effluent to hydrogen sulfide, but the over-oxidation of dissolved sulfide in SOR decreased the overall sulfate removal efficiency to ~46.3%. Overall, the two-stage FBR process with ORP feedback dosing of ethanol was effective for sequentially removing selenate, nitrate and sulfate and recovering Se0 from wastewater.


Subject(s)
Nitrates , Selenium , Bioreactors , Feedback , Oxidation-Reduction , Selenic Acid , Sulfates
6.
Sci Total Environ ; 801: 149613, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34438154

ABSTRACT

This study proposed and validated a method integrating in situ hydrotalcite precipitation (Virtual Curtain™ (VC) technology) with bioprocess for treating a cyanide (CN)-augmented (ca. 5 mg-CN L-1) sulfate-laden neutral mine drainage, from a waste rock dump (WD2) of an Australian gold mine. Efficacies of various carbon (C) sources (ethanol, lactate, and two natural substrates; Eucalyptus wood sawdust (EW) and Typha biomass (TB)) for promoting microbial reduction in both: CN-augmented WD2 water and VC-treated CN-augmented WD2 water were assessed in a 60-days microcosms study at 30 °C. The microcosms were monitored over time for pH, redox potential, dissolved hydrogen sulfide, chloride, nitrite, nitrate, sulfate, phosphate, biogas production, dissolved organic carbon, total dissolved nitrogen, and dissolved CN. The VC treatment removed a range of metals (Mg, Ni and Zn) and metalloid Se from the CN-augmented WD2 water to below detection. Other elements substantially reduced in concentration included Ba, F, Si and U. However, the VC treatment did not remove substantial nitrate, sulfate or CN. Microcosm trials revealed that the indigenous microbial community in WD2 could effectively denitrify and reduce sulfate, with TB was the most efficient C source for promoting sulfate and CN removal; whereas, EW facilitated only marginally higher sulfate reduction compared with controls. The highest sulfate reduction rate (76 g-SO42- m-3 d-1) was achieved with VC-treated water amended with TB, indicating that VC pre-treatment was beneficial. Further, all treatments amended with external C, facilitated 100% removal of dissolved CN after 60 days, whereas only partial (65%) CN removal was recorded in the control. Overall, the proposed integrated method appears a viable option for treating neutral gold mine drainage.


Subject(s)
Cyanides , Gold , Aluminum Hydroxide , Australia , Hydrogen-Ion Concentration , Magnesium Hydroxide , Sulfates
7.
J Hazard Mater ; 402: 123770, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33254781

ABSTRACT

Electron donors are a major cost-factor in biological removal of oxyanions, such as nitrate and selenate from wastewater. In this study, an online ethanol dosing strategy based on feedback control of oxidation-reduction potential (ORP) was designed to optimize the performance of a lab-scale fluidized bed reactor (FBR) in treating selenate and nitrate (5 mM each) containing wastewater. The FBR performance was evaluated at various ORP setpoints ranging between -520 mV and -240 mV (vs. Ag/AgCl). Results suggested that both nitrate and selenate were completely removed at ORPs between -520 mV and -360 mV, with methylseleninic acid, selenocyanate, selenosulfate and ammonia being produced at low ORPs between -520 mV and -480 mV, likely due to overdosing of ethanol. At ORPs between -300 mV and -240 mV, limited ethanol dosing resulted in an apparent decline in selenate removal whereas nitrate removal remained stable. Resuming the ORP to -520 mV successfully restored complete selenate reduction. An optimal ORP of -400 mV was identified for the FBR, whereby selenate and nitrate were nearly completely removed with a minimal ethanol consumption. Overall, controlling ORP via feedback-dosing of the electron donor was an effective strategy to optimize FBR performance for reducing selenate and nitrate in wastewater.


Subject(s)
Bioreactors , Nitrates , Ethanol , Feedback , Oxidation-Reduction , Selenic Acid
8.
Sci Total Environ ; 749: 142359, 2020 Dec 20.
Article in English | MEDLINE | ID: mdl-33370900

ABSTRACT

Wastewater contaminated with high concentrations of selenium oxyanions requires treatment prior to discharge. Biological fluidized bed reactors (FBRs) can be an option for removing selenium oxyanions from wastewater by converting them into elemental selenium, which can be separated from the treated effluent. In this study, a lab-scale FBR was constructed with granular activated carbon as biofilm carrier and inoculated with a consortium of selenate reducing bacteria enriched from environmental samples. The FBR was loaded with an influent containing ethanol (10 mM) and selenate (10 mM) as the microbial electron donor and acceptor, respectively. The performance of the FBR in reducing selenate was evaluated under various hydraulic retention times (HRTs) (120 h, 72 h, 48 h, 24 h, 12 h, 6 h, 3 h, 1 h and 20 min). After process acclimatization, selenate was completely removed with no notable selenite produced when the HRT was stepwise decreased from 120 h to 6 h. However, decreasing the HRT to 3 h resulted in selenite accumulation (0.17 ± 0.023 mM) in the effluent although selenate removal efficiency remained at 99.8 ± 0.20%. At 1 h HRT, the FBR removed 90.8 ± 1.4% of the selenate at a rate of 9.6 ± 0.15 mM h-1, which is the highest selenate reduction rate reported in the literature so far. However, 1 h HRT resulted in notable selenite accumulation (up to 2.4 ± 0.27 mM). Further decreasing the HRT to 20 min resulted in a notable decline in selenate reduction. Selenate reduction recovered from the "shock loading" after the HRT was increased back to 3 h. However, selenite still accumulated until the FBR was operated in batch mode for 6 days. This study affirmed that FBR is a promising treatment option for selenate-rich wastewater, and the process can be efficiently operated at low HRTs.


Subject(s)
Bioreactors , Selenium Compounds , Anaerobiosis , Charcoal , Selenic Acid
9.
Sci Total Environ ; 744: 140576, 2020 Nov 20.
Article in English | MEDLINE | ID: mdl-32717461

ABSTRACT

Intermittently Decanted Extended Aeration (IDEA) processes are widely used for wastewater treatment. However, in-depth performance evaluation of a full-scale IDEA plant is rare, making it challenging for water utilities to meet the increasingly stringent discharge requirements with these assets. This study aims to fill this gap through a comprehensive assessment of nitrogen and phosphorus removal in a full-scale IDEA plant in Australia. The plant consists of two identical IDEA tanks operated in-parallel. Upstream to each tank is a bioselector with four interlinked compartments. We conducted an eight-week monitoring program with four intensive cyclic studies to establish detailed nutrient profiles of the two IDEA tanks to assess the performance of nitrogen and alum assisted phosphorus removal. Results showed that the plant enabled good nitrification in the IDEA effluent. However, the denitrification efficiency was low (ca. 50%), and could be improved by decreasing oxygen supply to suppress nitrite oxidation and preserve influent carbon. The addition of alum to the IDEA tank appeared to be ineffective given the low P concentration (<1 mg-P/L) in the tank. The bioselector was identified as a better alum-dosing location, given its higher (~7-fold) phosphate concentration in comparison to the influent. Stopping the dosing of alum only marginally increased the effluent P (0.35 to 0.52 mg-P/L), implying that P removal was predominantly (94%) biologically mediated and achieved via P accumulating microorganisms. Overall, this study offers timely and useful process understanding of the performance of IDEA plants, as well as other similar wastewater treatment configurations.

10.
J Hazard Mater ; 400: 123207, 2020 12 05.
Article in English | MEDLINE | ID: mdl-32585515

ABSTRACT

This study examines a new method to dispose the biomass of a rare earth elements (REE) hyperaccumulator, Dicranopteris pedata, as a REE containing additive of a basal fertilizer for agricultural application. The D. pedata laminas were calcinated to fabricate ashes. The total REE content was 2.65 % for AshDp500, and 4.12 % for AshDp815, respectively. However, as for the heavy metals, Cd or Pb, a higher content could be found in AshDp500 than in AshDp815. The elemental contents of D. pedata ashes are qualified for fertilizer application. Pot experiments were then conducted to investigate the effects of AshDp815 on both the yield and quality of Ipomoea aquatica Forsskal grown in a yellow brown earth, or in a red soil. The application of the ashes increased the I. aquatica height, biomass, vitamin C, soluble protein, and soluble sugar contents, but decreased the I. aquatica nitrate and free amino acids contents. Furthermore, none of the microelements of I. aquatica leaf exceeded the Chinese national standard. The observations indicate the favorable effect of using D. pedata ash on the growth of I. aquatica which is most likely the result from the fertilizer effects of both macroelements and REE present in the ash.


Subject(s)
Ipomoea , Metals, Rare Earth , Tracheophyta , Fertilizers , Soil
11.
Chemosphere ; 252: 126570, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32443266

ABSTRACT

Hydrotalcite precipitation is a promising technology for the on-site treatment of acid mine drainage (AMD). This technology is underpinned by the synthesis of hydrotalcite that can effectively remove various contaminants. However, hydrotalcite precipitation has only limited capacity to facilitate sulfate removal from AMD. Therefore, the feasibility of coupling biological sulfate reduction with the hydrotalcite precipitation to maximize sulfate removal was evaluated in this study. AMD emanating from a gold mine (pH 4.3, sulfate 2000 mg L-1, with various metals including Al, Cd, Co, Cu, Fe, Mn, Ni, Zn) was first treated using the hydrotalcite precipitation. Subsequently, biological treatment of the post-hydrotalcite precipitation effluent was conducted in an ethanol-fed fluidized bed reactor (FBR) at a hydraulic retention time (HRT) of 0.8-1.6 day. The hydrotalcite precipitation readily neutralized the acidity of AMD and removed 10% of sulfate and over 99% of Al, Cd, Co, Cu, Fe, Mn, Ni, Zn. The overall sulfate removal increased to 73% with subsequent FBR treatment. Based on 454 pyrosequencing of 16S rRNA genes, the identified genera of sulfate-reducing bacteria (SRB) included Desulfovibrio, Desulfomicrobium and Desulfococcus. This study showed that sulfate-rich AMD can be effectively treated by integrating hydrotalcite precipitation and a biological sulfate reducing FBR.


Subject(s)
Aluminum Hydroxide/chemistry , Magnesium Hydroxide/chemistry , Refuse Disposal/methods , Sulfates/chemistry , Acids , Bioreactors/microbiology , Hydrogen-Ion Concentration , Metals , Mining , Oxidation-Reduction , RNA, Ribosomal, 16S
12.
Appl Environ Microbiol ; 86(1)2019 12 13.
Article in English | MEDLINE | ID: mdl-31628147

ABSTRACT

Sulfate-reducing bacteria (SRB) are key contributors to microbe-induced corrosion (MIC), which can lead to serious economic and environmental impact. The presence of a biofilm significantly increases the MIC rate. Inhibition of the quorum-sensing (QS) system is a promising alternative approach to prevent biofilm formation in various industrial settings, especially considering the significant ecological impact of conventional chemical-based mitigation strategies. In this study, the effect of the QS stimulation and inhibition on Desulfovibrio vulgaris is described in terms of anaerobic respiration, cell activity, biofilm formation, and biocorrosion of carbon steel. All these traits were repressed when bacteria were in contact with QS inhibitors but enhanced upon exposure to QS signal molecules compared to the control. The difference in the treatments was confirmed by transcriptomic analysis performed at different time points after treatment application. Genes related to lactate and pyruvate metabolism, sulfate reduction, electron transfer, and biofilm formation were downregulated upon QS inhibition. In contrast, QS stimulation led to an upregulation of the above-mentioned genes compared to the control. In summary, these results reveal the impact of QS on the activity of D. vulgaris, paving the way toward the prevention of corrosive SRB biofilm formation via QS inhibition.IMPORTANCE Sulfate-reducing bacteria (SRB) are considered key contributors to biocorrosion, particularly in saline environments. Biocorrosion imposes tremendous economic costs, and common approaches to mitigate this problem involve the use of toxic and hazardous chemicals (e.g., chlorine), which raise health and environmental safety concerns. Quorum-sensing inhibitors (QSIs) can be used as an alternative approach to inhibit biofilm formation and biocorrosion. However, this approach would only be effective if SRB rely on QS for the pathways associated with biocorrosion. These pathways would include biofilm formation, electron transfer, and metabolism. This study demonstrates the role of QS in Desulfovibrio vulgaris on the above-mentioned pathways through both phenotypic measurements and transcriptomic approach. The results of this study suggest that QSIs can be used to mitigate SRB-induced corrosion problems in ecologically sensitive areas.


Subject(s)
Biofilms/drug effects , Desulfovibrio vulgaris/growth & development , Quorum Sensing/drug effects , Acyl-Butyrolactones/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biofilms/growth & development , Carbon/metabolism , Corrosion , Desulfovibrio vulgaris/genetics , Desulfovibrio vulgaris/metabolism , Energy Metabolism/genetics , Gene Expression Regulation , Genes, Bacterial , Lactic Acid/metabolism , Plankton/microbiology , Pyruvic Acid/metabolism , Seawater/chemistry , Steel , Sulfates/metabolism , Transcription Factors/genetics , Transcriptome
13.
Nat Commun ; 10(1): 2290, 2019 05 23.
Article in English | MEDLINE | ID: mdl-31123249

ABSTRACT

Microbial contribution to gold biogeochemical cycling has been proposed. However, studies have focused primarily on the influence of prokaryotes on gold reduction and precipitation through a detoxification-oriented mechanism. Here we show, fungi, a major driver of mineral bioweathering, can initiate gold oxidation under Earth surface conditions, which is of significance for dissolved gold species formation and distribution. Presence of the gold-oxidizing fungus TA_pink1, an isolate of Fusarium oxysporum, suggests fungi have the potential to substantially impact gold biogeochemical cycling. Our data further reveal that indigenous fungal diversity positively correlates with in situ gold concentrations. Hypocreales, the order of the gold-oxidizing fungus, show the highest centrality in the fungal microbiome of the auriferous environment. Therefore, we argue that the redox interaction between fungi and gold is critical and should be considered in gold biogeochemical cycling.


Subject(s)
Fusarium/metabolism , Gold/metabolism , Hypocreales/metabolism , Soil Microbiology , Soil/chemistry , Gold/chemistry , Minerals/chemistry , Minerals/metabolism , Oxidation-Reduction , Western Australia
14.
J Environ Manage ; 238: 41-48, 2019 May 15.
Article in English | MEDLINE | ID: mdl-30844544

ABSTRACT

Sewage treatment plants are a potential point source for recycling of phosphorus (P). Several technologies have been proposed to biologically recover P from wastewater. The majority of these technologies are side-stream processes and rely on an external source of soluble organic carbon to facilitate P recovery. To date, no studies have demonstrated the potential to facilitate main-stream recovery of P, using carbon that is naturally present in wastewater. Simultaneous nitrification, denitrification and phosphorus removal (SNDPR) is an elegant process that can uptake influent carbon and effectively remove both nitrogen (N) and P from wastewater. SNDPR studies to date, however, have failed to facilitate an end-of-anaerobic-phase P rich liquor, that enables economies of scale to recover influent P. Therefore, this study examined the feasibility of achieving a P rich liquor (e.g. > 70 mg-P/L) in a granular SNDPR process. A synthetic influent that replicated the nutrient and carbon concentrations of municipal wastewater was used to investigate whether carbon in the influent wastewater could enable both nutrient removal and P recovery from wastewater. Our granular SNDPR process was able to facilitate an end-of-anaerobic-phase liquor with P enriched to approximately 100 mg-P/L. A dissolved oxygen (DO) concentration of 0.5 mg/L in a sequencing batch reactor (SBR) was found to be essential to achieve complete nutrient removal and a high P concentration at the end of the anaerobic phase. At this steady state of reactor operation, the abundance of polyphosphate accumulating organisms (PAOs) was 2.6 times the abundance of glycogen accumulating organisms (GAOs). The study also demonstrated the importance of denitrifying polyphosphate accumulating organisms (DPAOs) and glycogen accumulating organisms (DGAOs) to achieve complete removal of N from the effluent. Compared to nitrifying bacteria, the polyphosphate accumulating organisms (PAOs) had a higher affinity towards DO. This study, for the first time, showed that the mainstream recovery of P is feasible using a SNDPR process.


Subject(s)
Denitrification , Nitrification , Bioreactors , Phosphorus , Sewage , Waste Disposal, Fluid , Wastewater
15.
J Hazard Mater ; 365: 778-788, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30476801

ABSTRACT

A quantitative approach for assessing hazards facilitates decision making on hazardous waste management practices. In this study, a scoring approach was developed to evaluate the physical, human health, environmental and amenity hazard aspects and risks (in case of exposure) of waste streams. The approach was based on the 15 hazard properties (HPs) defined in European Commission Waste Framework Directive 2008/98/EC and their related Globally Harmonised System of Classification and Labelling of Chemicals (GHS) hazard statement codes (H-codes). Additionally, amenity and other hazards including space requirement, odour, dust, vermin, visual impact, radioactivity and physical injury were considered. A score of 0-3 was assigned to each of the H-codes or amenity and other hazards. The scoring approach consisted of: 1) determining the waste composition; 2) searching H-codes based on waste composition and assigning H-codes to the associated HPs; 3) calculating the hazard score for each of the four hazard aspects; and 4) calculating the total score for each waste. Two methods were used to calculate the total hazard score for 29 hazardous wastes. The wastes were ranked over a hazard spectrum to indicate the potential degree of hazard. The new hazard scoring approach can be used for prioritising efforts in managing wastes.

16.
J Hazard Mater ; 360: 504-511, 2018 10 15.
Article in English | MEDLINE | ID: mdl-30144769

ABSTRACT

Applying biohydrometallurgy for metal extraction and recovery from mixed and polymetallic wastes such as electronic waste is limited due to microbial inhibition at low pulp densities and substrate (iron and sulfur) limitation. Here, we investigated the application of indirect non-contact bioleaching with biogenic ferric iron and sulfuric acid to extract metals from lithium-ion battery (LIB) waste. Results showed that although a single leach stage at ambient temperature only facilitated low leach yields (<10%), leach yields for all metals improved with multiple sequential leach stages (4 × 1 h). Biogenic ferric leaching augmented with 100 mM H2SO4 further enabled the highest leach yields (53.2% cobalt, 60.0% lithium, 48.7% nickel, 81.8% manganese, 74.4% copper). The proposed use of bioreagents is a viable and a more environmentally benign alternative to traditional mineral processing, which could be further improved by appropriate pre-treatment of the LIB waste.


Subject(s)
Electric Power Supplies , Electronic Waste , Iron/chemistry , Lithium/chemistry , Sulfuric Acids/chemistry , Acidithiobacillus/metabolism , Iron/metabolism , Recycling/methods , Sulfuric Acids/metabolism
17.
J Clin Neurosci ; 55: 52-56, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30042067

ABSTRACT

BACKGROUND: An increasing number of patients with intracranial haemorrhages are aspirin-users. Neurosurgeons commonly attempt to minimize the risk of re-bleeding by withholding the medication and giving platelet transfusion. However, recent studies raised safety concerns and showed poorer outcome with platelet transfusion when the latter was not guided by changes in platelet function. AIM OF STUDY: To study the temporal pattern and degree of changes in platelet activities following a fixed dose of platelet transfusion in aspirin-users with intracranial haemorrhages. METHODS: Aspirin-users with intracranial haemorrhages underwent baseline aspirin response units (ARU) using the VerifyNow® assay. Those who showed abnormal platelet activity received a single dose of 4 units of platelet concentrate. ARU were then repeated at 4 h, 24 h and 48 h post-transfusion. Patients were classified according to their responses to transfusion. RESULTS: Twenty patients were recruited. At 4 h after transfusion, 11 (55%) patients had normalised platelet activities while the rest may show delayed or absent of normalization. Overall, eight (40%) patients were 'early and persistent transfusion responders', five 'delayed transfusion responders', and five (25%) had persistently abnormal platelet function. Two (10%) patients who initially responded to transfusion failed to maintain normalized platelet activity. CONCLUSION: Platelet activities in aspirin-users showed considerable heterogeneity up to 48 h following a blanket approach of platelet transfusion. The need for repeated transfusion or alternative therapy strongly argues for a guided practice for transfusion based on point-of-care platelet function assay. Future research should also adopt this approach to re-examine the safety and effectiveness of platelet transfusion in these patients.


Subject(s)
Intracranial Hemorrhages/therapy , Platelet Function Tests/methods , Platelet Transfusion/methods , Point-of-Care Testing , Aspirin/administration & dosage , Aspirin/adverse effects , Blood Platelets/drug effects , Female , Humans , Male , Middle Aged , Pilot Projects , Platelet Aggregation Inhibitors/administration & dosage , Platelet Aggregation Inhibitors/adverse effects
18.
J Environ Manage ; 218: 569-578, 2018 Jul 15.
Article in English | MEDLINE | ID: mdl-29709825

ABSTRACT

Enhanced biological phosphorus removal and recovery (EBPR-r) is a biofilm process that makes use of polyphosphate accumulating organisms (PAOs) to remove and recover phosphorus (P) from wastewater. The original process was inefficient, as indicated by the low P-release to carbon (C)-uptake (Prel/Cupt) molar ratio of the biofilm. This study successfully validated a strategy to improve the Prel/Cupt ratio by at least 3-fold. With an unchanged supply of carbon in the recovery stream, an increase in the hydraulic loading in stages I, II and III (7.2, 14.4 and 21.6 L, respectively) resulted in a 43% increase in the Prel/Cupt ratio (0.069, 0.076 and 0.103, respectively). The ratio further increased by 150% (from 0.103 to 0.255) when the duration of the P uptake period was increased from 4 h (stage III) to 10 h (stage IV). Canonical correspondence analysis showed that, correlated to the 3-fold increase in the Prel/Cupt ratio, there was an increase in the abundance of PAOs ("Candidatus Accumulibacter" Clade IIA) and a decrease in the occurrence of glycogen accumulating organisms (GAOs) (family Sinobacteraceae). However, the four stage operation impaired denitrification, resulting in a 5-fold reduction in the Nden/Pupt ratio. The decline in denitrification was consistent with a decrease in the abundance of denitrifiers including denitrifying PAOs (family Comamonadaceae and "Candidatus Accumulibacter" Clade IA). Overall, a strategy to facilitate more efficient use of carbon was validated, enabling a 3-fold carbon saving for P recovery. The new process enabled up to 80% of the wastewater P to be captured in a P-enriched stream (>90 mg/L) with a single uptake/release cycle of recovery.


Subject(s)
Bioreactors , Carbon , Phosphorus , Denitrification , Polyphosphates , Wastewater
19.
Bioresour Technol ; 250: 317-327, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29179053

ABSTRACT

This study examined a new approach for starting up a bioelectrochemical system (BES) for oxalate removal from an alkaline (pH > 12) and saline (NaCl 25 g/L) liquor. An oxalotrophic biofilm pre-grown aerobically onto granular graphite carriers was used directly as both the microbial inoculum and the BES anode. At anode potential of +200 mV (Ag/AgCl) the biofilm readily switched from using oxygen to graphite as sole electron acceptor for oxalate oxidation. BES performance was characterised at various hydraulic retention times (HRTs, 3-24 h), anode potentials (-600 to +200 mV vs. Ag/AgCl) and influent oxalate (25 mM) to acetate (0-30 mM) ratios. Maximum current density recorded was 363 A/m3 at 3 h HRT with a high coulombic efficiency (CE) of 70%. The biofilm could concurrently degrade acetate and oxalate (CE 80%) without apparent preference towards acetate. Pyro-sequencing analysis revealed that known oxalate degraders Oxalobacteraceae became abundant signifying their role in this novel bioprocess.


Subject(s)
Biofilms , Oxalates , Bioelectric Energy Sources , Electrodes , Graphite , Oxidation-Reduction
20.
Bioresour Technol ; 245(Pt A): 1168-1175, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28863995

ABSTRACT

Bioelectrochemical system (BES) can act as an auxiliary technology for improving organic waste treatment and biogas production in anaerobic digestion (AD). For the first time this study directly compared the performance of a single- and a cation-exchange membrane-equipped two-chamber BES-AD systems at thermophilic conditions. The results indicated that an active glucose-fed thermophilic anaerobic sludge could readily (<3days) increase biogas production in both reactor configurations by inserting a carbon electrode poised at -0.8V (vs. Ag/AgCl). However, after a 3-week operation, the biogas production rates from the single- and two-chamber BES reactor decreased due to volatile fatty acids accumulation. Only the two-chamber configuration could enable methane enrichment (98% CH4v/v) in biogas. Overall, this study suggests that integrating bioelectrodes in-situ could not sustainably improve biogas production in a thermophilic AD reactor, and future studies should be directed towards the use of bioelectrodes for improving biogas quality.


Subject(s)
Biofuels , Bioreactors , Anaerobiosis , Fatty Acids, Volatile , Methane , Sewage
SELECTION OF CITATIONS
SEARCH DETAIL
...