Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 166
Filter
1.
Cardiovasc Diagn Ther ; 14(3): 447-458, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38975008

ABSTRACT

Background: Vascular inflammation plays a crucial role in the development of atherosclerosis and atherosclerotic plaque rupture resulting in acute coronary syndrome (ACS). Pericoronary adipose tissue (PCAT) attenuation quantified from routine coronary computed tomography angiography (CCTA) has emerged as a promising non-invasive imaging biomarker of coronary inflammation. However, a detailed understanding of the natural history of PCAT attenuation is required before it can be used as a surrogate endpoint in trials of novel therapies targeting coronary inflammation. This article aims to explore the natural history of PCAT attenuation and its association with changes in plaque characteristics. Methods: The Australian natuRal hISTOry of periCoronary adipose tissue attenuation, RAdiomics and plaque by computed Tomographic angiography (ARISTOCRAT) registry is a multi-centre observational registry enrolling patients undergoing clinically indicated serial CCTA in 9 centres across Australia. CCTA scan parameters will be matched across serial scans. Quantitative analysis of plaque and PCAT will be performed using semiautomated software. Discussion: The primary endpoint is to explore temporal changes in patient-level and lesion-level PCAT attenuation by CCTA and their associations with changes in plaque characteristics. Secondary endpoints include evaluating: (I) impact of statin therapy on PCAT attenuation and plaque characteristics; and (II) changes in PCAT attenuation and plaque characteristics in specific subgroups according to sex and risk factors. ARISTOCRAT will further our understanding of the natural history of PCAT attenuation and its association with changes in plaque characteristics. Trial Registration: This study has been prospectively registered with the Australia and New Zealand Clinical Trials Registry (ACTRN12621001018808).

3.
Article in English | MEDLINE | ID: mdl-38929040

ABSTRACT

Despite the lack of evidence, opioids are still routinely used as a solution to long-term management for chronic noncancer pain (CNCP). Given the significant risks associated with long-term opioid use, including the increased number of unregulated opioid pills at large in the opioid ecosystem, opioid cessation or reduction may be the desired goal of the patient and clinician. Viable nonpharmacological interventions (NPIs) to complement and/or replace opioids for CNCP are needed. Comprehensive reviews that address the impact of NPIs to help adults with CNCP reduce opioid use safely are lacking. We conducted a literature search in PubMed, CINAHL, Embase, PsycINFO, and Scopus for studies published in English. The initial search was conducted in April 2021, and updated in January 2024. The literature search yielded 19,190 relevant articles. Thirty-nine studies met the eligibility criteria and underwent data extraction. Of these, nineteen (49%) were randomized controlled trials, eighteen (46%) were observational studies, and two (5%) were secondary analyses. Among adults with CNCP who use opioids for pain management, studies on mindfulness, yoga, educational programs, certain devices or digital technology, chiropractic, and combination NPIs suggest that they might be an effective approach for reducing both pain intensity and opioid use, but other NPIs did not show a significant effect (e.g., hypnosis, virtual reality). This review revealed there is a small to moderate body of literature demonstrating that some NPIs might be an effective and safe approach for reducing pain and opioid use, concurrently.


Subject(s)
Analgesics, Opioid , Chronic Pain , Humans , Chronic Pain/drug therapy , Chronic Pain/therapy , Analgesics, Opioid/therapeutic use , Opioid-Related Disorders , Pain Management/methods
4.
Forensic Sci Int Genet ; 72: 103086, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38897164

ABSTRACT

Significant progress has been made in recent years in the development of techniques for Next Generation Sequencing (NGS), or Massively Parallel Sequencing (MPS), of forensically relevant short tandem repeat (STR) loci. However, as these technologies are investigated and adopted by forensic laboratories, new challenges unfold that require further scrutiny. In the analysis of DNA profiles generated using the MiSeq FGx sequencing system, we have observed noise sequences with relatively high readcounts that are challenging to distinguish from genuine alleles. These high read count noise sequences appear as allele sequences with one or a few substituted bases compared to a known allele sequence within the profile. An examination of ForenSeq DNA Signature Prep Kit STR noise sequences revealed that the substituted base of a parent allele can align to the same position on the sequence across noise sequences. This suggests that these substitution events occur at specific positions within the amplicon, resulting in multiple noise reads with substitutions at the same position. Mapping of the noise events onto the original raw read positions revealed a high number of events, or "noise spikes", occurring at specific positions within a given sequencing run. These noise spikes affected reads across the entire run, agnostic of locus or sample, while the position, occurrence, and amplitude of the spikes differed across runs. The majority of noise sequences with high read counts in a DNA profile were generated from base changes at these spike positions, and could be classified as "noise spike artefacts". In this paper we present evidence of the noise spike artefacts and their genesis during the sequencing process in the sequencing-by-synthesis (SBS) cycles, as well as the methods developed to detect them. The information and methods will assist laboratories with detecting noise spikes in MiSeq FGx sequencing runs, differentiating authentic allele sequences from noise spike artefacts, and developing protocols for analyst review and handling of MiSeq FGx data.

5.
Pharmacogenomics ; : 1-6, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38884958

ABSTRACT

Background: Previous differences in guideline recommendation strength for CYP2C19 intermediate metabolizers may have limited genotype (PGx)-optimal post-percutaneous coronary intervention antiplatelet prescribing. Results: In this single-center retrospective observational cohort study of CYP2C19 intermediate metabolizers, patients prescribed PGx-optimal therapy were younger and less likely on anticoagulation (2 vs 12%; p = 0.006). More patients prescribed PGx-optimal therapy possessed commercial insurance (36 vs 7%; p < 0.001), which was a predictor for PGx-optimal selection (OR: 6.464; 95% CI: 2.386-17.516; p < 0.001). Conclusion: Anticoagulation use was significantly associated with clopidogrel use (OR: 0.138; 95% CI: 0.026-0.730; p = 0.020). No statistical difference in composite major adverse cardiovascular events (5 vs 14%; p = 0.173) or bleeding (8 vs 6%; Not significant) was observed between PGx-optimal and PGx-suboptimal therapy.


Not all CYP2C19 intermediate metabolizers undergoing PCI are prescribed genotype-optimal P2Y12 antiplatelet therapy. Commercial insurance and no anticoagulant were found to be associated with ticagrelor and prasugrel prescribing in this population.

6.
NPJ Parkinsons Dis ; 10(1): 96, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702305

ABSTRACT

Parkinson's disease (PD) is associated with aggregation of misfolded α-synuclein and other proteins, including tau. We designed a cross-sectional study to quantify the brain binding of [11C]PBB3 (a ligand known to bind to misfolded tau and possibly α-synuclein) as a proxy of misfolded protein aggregation in Parkinson's disease (PD) subjects with and without cognitive impairment and healthy controls (HC). In this cross-sectional study, nineteen cognitively normal PD subjects (CN-PD), thirteen cognitively impaired PD subjects (CI-PD) and ten HC underwent [11C]PBB3 PET. A subset of the PD subjects also underwent PET imaging with [11C](+)DTBZ to assess dopaminergic denervation and [11C]PBR28 to assess neuroinflammation. Compared to HC, PD subjects showed higher [11C]PBB3 binding in the posterior putamen but not the substantia nigra. There was no relationship across subjects between [11C]PBB3 and [11C]PBR28 binding in nigrostriatal regions. [11C]PBB3 binding was increased in the anterior cingulate in CI-PD compared to CN-PD and HC, and there was an inverse correlation between cognitive scores and [11C]PBB3 binding in this region across all PD subjects. Our results support a primary role of abnormal protein deposition localized to the posterior putamen in PD. This suggests that striatal axonal terminals are preferentially involved in the pathophysiology of PD. Furthermore, our findings suggest that anterior cingulate pathology might represent a significant in vivo marker of cognitive impairment in PD, in agreement with previous neuropathological studies.

7.
iScience ; 27(6): 109834, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38784016

ABSTRACT

Fasting has emerged as a potent means of preserving tissue function with age in multiple model organisms. However, our understanding of the relationship between food removal and long-term health is incomplete. Here, we demonstrate that in the nematode worm Caenorhabditis elegans, a single period of early-life fasting is sufficient to selectively enhance HSF-1 activity, maintain proteostasis capacity and promote longevity without compromising fecundity. These effects persist even when food is returned, and are dependent on the mitochondrial sirtuin, SIR-2.2 and the H3K27me3 demethylase, JMJD-3.1. We find that increased HSF-1 activity upon fasting is associated with elevated SIR-2.2 levels, decreased mitochondrial copy number and reduced H3K27me3 levels at the promoters of HSF-1 target genes. Furthermore, consistent with our findings in worms, HSF-1 activity is also enhanced in muscle tissue from fasted mice, suggesting that the potentiation of HSF-1 is a conserved response to food withdrawal.

8.
Eur Heart J Case Rep ; 8(5): ytae228, 2024 May.
Article in English | MEDLINE | ID: mdl-38745729

ABSTRACT

Background: Granulomatosis with Polyangiitis (GPA) is a rare multi-system autoimmune disorder that may present with cardiac manifestations that are often under-recognized. In this report, we discuss a usual case of a patient who presented as a cardiac emergency with recurrent ST elevation and discuss the approach and management. Case summary: A 44-year-old man presented with two episodes of chest pain associated with ST-segment elevation on 12-lead ECG. Under investigation over the past several weeks for fatigue, nasal congestion, and red eyes, his first presentation was associated with widespread ST-segment elevation and an echogenic myocardium suggestive of myocarditis that was confirmed on cardiac MRI. A week later, the development of chest pain, antero-lateral ST elevation, and regional wall motion abnormalities suggested an acute coronary syndrome and he proceeded to primary percutaneous intervention that treated a lesion in the distal left anterior descending artery secondary to coronary arteritis. Diagnosed with GPA, he was started on immunosuppression and has had a resolution of his cardiac involvement at follow-up. Discussion: This case report describes an unusual case of myocarditis and coronary arteritis presenting acutely in the same patient and emphasizes the importance of considering systemic autoimmune conditions when encountering primarily cardiac presentations. Early recognition and diagnosis of cardiac involvement will improve the long-term outcomes in these patients.

9.
J Am Chem Soc ; 146(15): 10581-10590, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38580459

ABSTRACT

Positron emission tomography is a widely used imaging platform for studying physiological processes. Despite the proliferation of modern synthetic methodologies for radiolabeling, the optimization of these reactions still primarily relies on inefficient one-factor-at-a-time approaches. High-throughput experimentation (HTE) has proven to be a powerful approach for optimizing reactions in many areas of chemical synthesis. However, to date, HTE has rarely been applied to radiochemistry. This is largely because of the short lifetime of common radioisotopes, which presents major challenges for efficient parallel reaction setup and analysis using standard equipment and workflows. Herein, we demonstrate an effective HTE workflow and apply it to the optimization of copper-mediated radiofluorination of pharmaceutically relevant boronate ester substrates. The workflow utilizes commercial equipment and allows for rapid analysis of reactions for optimizing reactions, exploring chemical space using pharmaceutically relevant aryl boronates for radiofluorinations, and constructing large radiochemistry data sets.


Subject(s)
Copper , Positron-Emission Tomography , Radiochemistry , Positron-Emission Tomography/methods , Radiopharmaceuticals , Fluorine Radioisotopes
10.
Org Lett ; 26(16): 3419-3423, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38630573

ABSTRACT

We present a photo- and Cu-mediated 11C cyanation of bench-stable (hetero)aryl thianthrenium salts via an aryl radical addition pathway. The thianthrenium substrates can be readily accessed via C-H functionalization, and the radiocyanation protocol proceeds under mild conditions (<50 °C, 5 min) and can be automated using open-source, readily accessible augmentations to existing radiochemistry equipment.

12.
FEBS J ; 291(2): 272-291, 2024 01.
Article in English | MEDLINE | ID: mdl-37584444

ABSTRACT

Although gene splicing occurs throughout the body, the phenotype of spliceosomal defects is largely limited to specific tissues. Cerebro-costo-mandibular syndrome (CCMS) is one such spliceosomal disease, which presents as congenital skeletal dysmorphism and is caused by mutations of SNRPB gene encoding Small Nuclear Ribonucleoprotein Polypeptides B/B' (SmB/B'). This study employed in vitro cell cultures to monitor osteo- and chondro-differentiation and examined the role of SmB/B' in the differentiation process. We found that low levels of SmB/B' by knockdown or mutations of SNRPB led to suppressed osteodifferentiation in Saos-2 osteoprogenitor-like cells, which was accompanied by affected splicing of Dlx5. On the other hand, low SmB/B' led to promoted chondrogenesis in HEPM mesenchymal stem cells. Consistent with other reports, osteogenesis was promoted by the Wnt/ß-catenin pathway activator and suppressed by Wnt and BMP blockers, whereas chondrogenesis was promoted by Wnt inhibitors. Suppressed osteogenic markers by SNRPB knockdown were partly rescued by Wnt/ß-catenin pathway activation. Reporter analysis revealed that suppression of SNRPB results in attenuated Wnt pathway and/or enhanced BMP pathway activities. SNRPB knockdown altered splicing of TCF7L2 which impacts Wnt/ß-catenin pathway activities. This work helps unravel the mechanism underlying CCMS whereby reduced expression of spliceosomal proteins causes skeletal phenotypes.


Subject(s)
Intellectual Disability , Micrognathism , Ribs/abnormalities , Spliceosomes , beta Catenin , beta Catenin/genetics , Cell Differentiation/genetics , Spliceosomes/genetics , snRNP Core Proteins/genetics , Osteogenesis/genetics , Wnt Signaling Pathway/genetics , Cells, Cultured
13.
Angew Chem Int Ed Engl ; 63(2): e202316365, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38010255

ABSTRACT

This report describes the development of a Zn(OTf)2 -mediated method for converting α-tertiary haloamides to the corresponding fluorine-18 labelled α-tertiary fluoroamides with no-carrier-added [18 F]tetramethylammonium fluoride. 1,5,7-Triazabicyclo[4.4.0]dec-5-ene is an essential additive for achieving high radiochemical conversion. Under the optimised conditions, radiofluorination proceeds at sterically hindered tertiary sites in high radiochemical conversions, yields, and purities. This method has been successfully automated and applied to access >200 mCi (>7.4 GBq) of several model radiofluorides. Mechanistic studies led to the development of a new, nucleophilic C-H radiofluorination process using N-sulphonyloxyamide substrates.

14.
J Forensic Sci ; 69(1): 40-51, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37753814

ABSTRACT

There is interest in comparing the output, principally the likelihood ratio, from the two probabilistic genotyping software EuroForMix (EFM) and STRmix™. Many of these comparison studies are descriptive and make little or no effort to diagnose the cause of difference. There are fundamental differences between EFM and STRmix™ that are causative of the largest set of likelihood ratio differences. This set of differences is for false donors where there are many instances of LRs just above or below 1 for EFM that give much lower LRs in STRmix™. This is caused by the separate estimation of parameters such as allele height variance and mixture proportion using MLE under Hp and Ha for EFM. This can result in very different estimations of these parameters under Hp and Ha . It results in a departure from calibration for EFM in the region of LRs just above and below 1.

15.
Sci Adv ; 9(44): eadh3083, 2023 11 03.
Article in English | MEDLINE | ID: mdl-37922356

ABSTRACT

Mutational signatures represent a genomic footprint of endogenous and exogenous mutational processes through tumor evolution. However, their functional impact on the proteome remains incompletely understood. We analyzed the protein-coding impact of single-base substitution (SBS) signatures in 12,341 cancer genomes from 18 cancer types. Stop-gain mutations (SGMs) (i.e., nonsense mutations) were strongly enriched in SBS signatures of tobacco smoking, APOBEC cytidine deaminases, and reactive oxygen species. These mutational processes alter specific trinucleotide contexts and thereby substitute serines and glutamic acids with stop codons. SGMs frequently affect cancer hallmark pathways and tumor suppressors such as TP53, FAT1, and APC. Tobacco-driven SGMs in lung cancer correlate with smoking history and highlight a preventable determinant of these harmful mutations. APOBEC-driven SGMs are enriched in YTCA motifs and associate with APOBEC3A expression. Our study exposes SGM expansion as a genetic mechanism by which endogenous and carcinogenic mutational processes directly contribute to protein loss of function, oncogenesis, and tumor heterogeneity.


Subject(s)
Neoplasms , Humans , Mutation , Neoplasms/genetics , Neoplasms/pathology , Cytidine Deaminase/genetics , APOBEC Deaminases/genetics , APOBEC Deaminases/metabolism , Tobacco Smoking
16.
Cancers (Basel) ; 15(19)2023 Oct 07.
Article in English | MEDLINE | ID: mdl-37835574

ABSTRACT

This paper examines the link between CNS tumor biology and heterogeneity and the use of genome-wide DNA methylation profiling as a clinical diagnostic platform. CNS tumors are the most common solid tumors in children, and their prognosis remains poor. This study retrospectively analyzed pediatric patients with CNS embryonal tumors in Hong Kong between 1999 and 2017, using data from the territory-wide registry and available formalin-fixed paraffin-embedded tumor tissue. After processing archival tumor tissue via DNA extraction, quantification, and methylation profiling, the data were analyzed by using the web-based DKFZ classifier (Molecular Neuropathology (MNP) 2.0 v11b4) and t-SNE analysis. Methylation profiles were deemed informative in 85 samples. Epigenetic data allowed molecular subgrouping and confirmed diagnosis in 65 samples, verified histologic diagnosis in 8, and suggested an alternative diagnosis in 12. This study demonstrates the potential of DNA methylation profiling in characterizing pediatric CNS embryonal tumors in a large cohort from Hong Kong, which should enable regional and international collaboration in future pediatric neuro-oncology research.

17.
Epigenetics Chromatin ; 16(1): 39, 2023 10 16.
Article in English | MEDLINE | ID: mdl-37845773

ABSTRACT

BACKGROUND: Vitamin C (vitC) enhances the activity of 2-oxoglutarate-dependent dioxygenases, including TET enzymes, which catalyse DNA demethylation, and Jumonji-domain histone demethylases. The epigenetic remodelling promoted by vitC improves the efficiency of induced pluripotent stem cell derivation, and is required to attain a ground-state of pluripotency in embryonic stem cells (ESCs) that closely mimics the inner cell mass of the early blastocyst. However, genome-wide DNA and histone demethylation can lead to upregulation of transposable elements (TEs), and it is not known how vitC addition in culture media affects TE expression in pluripotent stem cells. RESULTS: Here we show that vitC increases the expression of several TE families, including evolutionarily young LINE-1 (L1) elements, in mouse ESCs. We find that TET activity is dispensable for L1 upregulation, and that instead it occurs largely as a result of H3K9me3 loss mediated by KDM4A/C histone demethylases. Despite increased L1 levels, we did not detect increased somatic insertion rates in vitC-treated cells. Notably, treatment of human ESCs with vitC also increases L1 protein levels, albeit through a distinct, post-transcriptional mechanism. CONCLUSION: VitC directly modulates the expression of mouse L1s and other TEs through epigenetic mechanisms, with potential for downstream effects related to the multiple emerging roles of L1s in cellular function.


Subject(s)
Ascorbic Acid , Mouse Embryonic Stem Cells , Humans , Animals , Mice , Ascorbic Acid/pharmacology , Mouse Embryonic Stem Cells/metabolism , Long Interspersed Nucleotide Elements , DNA Methylation , Histone Demethylases/metabolism , DNA/metabolism , Demethylation , Jumonji Domain-Containing Histone Demethylases/genetics , Jumonji Domain-Containing Histone Demethylases/metabolism
18.
Sci Rep ; 13(1): 15509, 2023 09 19.
Article in English | MEDLINE | ID: mdl-37726291

ABSTRACT

To evaluate if Indigenous Australians have higher coronary inflammation demonstrated non-invasively using pericoronary adipose tissue attenuation on coronary computed tomography angiography (CCTA). We retrospectively obtained a cohort 54 Indigenous patients age- and sex-matched to 54 non-Indigenous controls (age: 46.5 ± 13.1 years; male: n = 66) undergoing CCTA at the Royal Darwin Hospital and Monash Medical Centre. Patient groups were defined to investigate the interaction of ethnicity and sex: Indigenous + male, Indigenous + female, control + male, control + female. Semi-automated software was used to assess pericoronary adipose tissue attenuation (PCAT-a) and volume (PCAT-v). Males had significantly higher PCAT-a (- 86.7 ± 7.8 HU vs. - 91.3 ± 7.1 HU, p = 0.003) than females. Indigenous patients had significantly higher PCAT-v (1.5 ± 0.5cm3 vs. 1.3 ± 0.4cm3, p = 0.032), but only numerically higher PCAT-a (p = 0.133) than controls. There was a significant difference in PCAT-a and PCAT-v across groups defined by Indigenous status and sex (p = 0.010 and p = 0.030, respectively). Among patients with matching CCTA contrast density, multivariable linear regression analysis showed an independent association between Indigenous status and PCAT-a. Indigenous men have increased PCAT-a in an age- and sex-matched cohort. Male sex is strongly associated with increased PCAT-a. Coronary inflammation may contribute to adverse cardiovascular outcomes in Indigenous Australians, but larger studies are required to validate these findings.


Subject(s)
Computed Tomography Angiography , RNA, Long Noncoding , Humans , Female , Male , Adult , Middle Aged , Australian Aboriginal and Torres Strait Islander Peoples , Retrospective Studies , Australia , Adipose Tissue/diagnostic imaging , Inflammation
19.
Article in English | MEDLINE | ID: mdl-37680669

ABSTRACT

In recent years, tractography based on diffusion magnetic resonance imaging (dMRI) has become a popular tool for studying microstructural changes resulting from brain diseases like Parkinson's Disease (PD). Quantitative anisotropy (QA) is a parameter that is used in deterministic fiber tracking as a measure of connection between brain regions. It remains unclear, however, if microstructural changes caused by lesioning the median forebrain bundle (MFB) to create a Parkinsonian rat model can be resolved using tractography based on ex-vivo diffusion MRI. This study aims to fill this gap and enable future mechanistic research on structural changes of the whole brain network rodent models of PD. Specifically, it evaluated the ability of correlational tractography to detect structural changes in the MFB of 6-hydroxydopamine (6-OHDA) lesioned rats. The findings reveal that correlational tractography can detect structural changes in lesioned MFB and differentiate between the 6-OHDA and control groups. Imaging results are supported by behavioral and histological evidence demonstrating that 6-OHDA lesioned rats were indeed Parkinsonian. The results suggest that QA and correlational tractography is appropriate to examine local structural changes in rodent models of neurodegenerative disease. More broadly, we expect that similar techniques may provide insight on how disease alters structure throughout the brain, and as a tool to optimize therapeutic interventions.

20.
Biochemistry ; 62(20): 3020-3032, 2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37747791

ABSTRACT

Protein binding to negatively charged lipids is essential for maintaining numerous vital cellular processes where its dysfunction can lead to various diseases. One such protein that plays a crucial role in this process is lactadherin, which competes with coagulation factors for membrane binding sites to regulate blood clotting. Despite identifying key binding regions of these proteins through structural and biochemical studies, models incorporating membrane dynamics are still lacking. In this study, we report on the multimodal binding of lactadherin and use it to gain insight into the binding mechanisms of its C domain homologs, factor V and factor VIII. Molecular dynamics simulations enhanced with the highly mobile mimetic model enabled the determination of lactadherin's multimodal binding on membranes that revealed critical interacting residues consistent with prior NMR and mutagenesis data. The binding occurred primarily via two dynamic structural ensembles: an inserted state and an unreported, highly conserved side-lying state driven by a cationic patch. We utilized these findings to analyze the membrane binding domains of coagulation factors V and VIII and identified their preferred membrane-bound conformations. Specifically, factor V's C domains maintained an inserted state, while factor VIII preferred a tilted, side-lying state that permitted antibody binding. Insight into lactadherin's atomistically resolved membrane interactions from a multistate perspective can guide new therapeutic opportunities in treating diseases related to blood coagulation.


Subject(s)
Factor VIII , Factor V , Factor VIII/chemistry , Factor VIII/metabolism , Factor V/chemistry , Factor V/metabolism , Binding Sites , Protein Binding , Molecular Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...