Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.289
Filter
1.
Int J Pharm ; : 124295, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38823469

ABSTRACT

Opioids are powerful analgesics; however, their significant systemic adverse effects and the need for frequent administration restrict their use. Nalbuphine (NA) is a κ-agonist narcotic with limited adverse effects, but needs to be frequently administrated due to its short elimination half-life. Whereas sebacoyl dinalbuphine ester (SDE) is a NA prodrug, which can effectively prolong the analgesic effect, but lacks immediate pain relief. Therefore, in this study, a rapid and sustained local delivery formulation to introduce NA and SDE directly into surgical sites was developed. An amphiphilic nanostructured lipid carrier (NLC) poloxamer 407 (P407) gel (NLC-Gel) was developed to permit concurrent delivery of hydrophobic SDE from the NLC core and hydrophilic NA from P407, offering a dual rapid and prolonged analgesic effect. Benefiting from the thermal-sensitive characteristic of P407, the formulation can be injected in liquid phase and instantly transit into gel at wound site. NLC-Gel properties, including particle size, drug release, rheology, and stability, were assessed. In vivo evaluation using a rat spinal surgery model highlighted the effect of the formulation through pain behavior test and hematology analysis. NLC-Gels demonstrated an analgesic effect comparable with that of commercial intramuscular injected SDE formulation (IM SDE), with only 15 % of the drug dosage. The inclusion of supplemental NA in the exterior gel (PA12-Gel + NA) provided rapid drug onset owing to swift NA dispersion, addressing acute pain within hours along with prolonged analgesic effects. Our findings suggest that this amphiphilic formulation significantly enhanced postoperative pain management in terms of safety and efficacy.

2.
J Med Phys ; 49(1): 110-119, 2024.
Article in English | MEDLINE | ID: mdl-38828073

ABSTRACT

Purpose: We have developed a bone-dedicated collimator with higher sensitivity but slightly degraded resolution on single-photon emission computed tomography (SPECT) for planar bone scintigraphy, compared with conventional low-energy high-resolution collimator. In this work, we investigated the feasibility of using the blind deconvolution algorithm to improve the resolution of planar images on bone scintigraphy. Materials and Methods: Monte Carlo simulation was performed with the NCAT phantom for modeling bone scintigraphy on the clinical dual-head SPECT scanner (Imagine NET 632, Beijing Novel Medical Equipment Ltd.) equipped with the bone-dedicated collimator. Maximum likelihood estimation method was used for the blind deconvolution algorithm. The initial estimation of point spread function (PSF) and iteration number for the method were determined by comparing the deblurred images obtained from different input parameters. We simulated different tumors in five different locations and with five different diameters to evaluate the robustness of the initial inputs. Furthermore, we performed chest phantom studies on the clinical SPECT scanner. The quantified increased contrast ratio (CR) between the tumor and the background was evaluated. Results: The 2 mm PSF kernel and 10 iterations provided a practical and robust deblurred image on our system. Those two inputs can generate robust deblurred images in terms of the tumor location and size with an average increased CR of 21.6%. The phantom studies also demonstrated the ability of blind deconvolution, using those two inputs, with increased CRs of 17%, 17%, 22%, 20%, and 13% for lesions with diameters of 1 cm, 2 cm, 3 cm, 4 cm, and 5 cm, respectively. Conclusions: It is feasible to use the blind deconvolution algorithm to deblur the planar images for SPECT bone scintigraphy. The appropriate values of the PSF kernel and the iteration number for the blind deconvolution can be determined using simulation studies.

3.
Cogn Neurodyn ; 18(3): 973-986, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38826661

ABSTRACT

Sex differences in the brain have been widely reported and may hold the key to elucidating sex differences in many medical conditions and drug response. However, the molecular correlates of these sex differences in structural and functional brain measures in the human brain remain unclear. Herein, we used sample entropy (SampEn) to quantify the signal complexity of resting-state functional magnetic resonance imaging (rsfMRI) in a large neuroimaging cohort (N = 1,642). The frontoparietal control network and the cingulo-opercular network had high signal complexity while the cerebellar and sensory motor networks had low signal complexity in both men and women. Compared with those in male brains, we found greater signal complexity in all functional brain networks in female brains with the default mode network exhibiting the largest sex difference. Using the gene expression data in brain tissues, we identified genes that were significantly associated with sex differences in brain signal complexity. The significant genes were enriched in the gene sets that were differentially expressed between the brain cortex and other tissues, the estrogen-signaling pathway, and the biological function of neural plasticity. In particular, the G-protein-coupled estrogen receptor 1 gene in the estrogen-signaling pathway was expressed more in brain regions with greater sex differences in SampEn. In conclusion, greater complexity in female brains may reflect the interactions between sex hormone fluctuations and neuromodulation of estrogen in women. Supplementary Information: The online version contains supplementary material available at 10.1007/s11571-023-09954-y.

4.
Article in English | MEDLINE | ID: mdl-38719187

ABSTRACT

Over one year, two KPC-producing and two non-KPC-producing Klebsiella pneumoniae strains were isolated from a patient. Genome and DNA hybridization analyses revealed the first three strains as a clonal lineage, with carbapenem resistance changes due to a Tn2-like transposon on an IncR/IncFII plasmid. The fourth strain, carrying three plasmids, caused a lethal infection and represented a different lineage. All strains belonged to the ST11-SL47-OL101 type. This study highlights the Tn2-like transposon's role in carbapenemase gene spread and the importance of distinguishing between bacterial colonization and infection.

5.
Microsurgery ; 44(4): e31186, 2024 May.
Article in English | MEDLINE | ID: mdl-38716649

ABSTRACT

INTRODUCTION: Free flap transfer for head and neck defects has gained worldwide acceptance. Because flap failure is a devastating outcome, studies have attempted to identify risk factors-including renal failure. We sought to determine whether end-stage renal disease (ESRD) patients undergoing dialysis are at increased risk of flap failure following microsurgical head and neck reconstruction. PATIENTS AND METHODS: The study's participants were patients who underwent free flap reconstruction in the head and neck region at Hualien Tzu Chi Hospital between January 2010 and December 2019. We used the National Health Insurance "Specific Diagnosis and Treatment Code" to identify patients undergoing dialysis; these patients comprised the dialysis group, whose members were matched to a non-dialysis group for age and gender. The dependent variables were flap survival rate, take-back rate, and flap failure risk between the dialysis and non-dialysis groups. RESULTS: We included 154 patients in the dialysis (n = 14) and non-dialysis (n = 140) groups. The groups were similar in terms of age and most comorbidities, except diabetes mellitus, hypertension, and coronary artery disease, which were more prevalent in the dialysis group. The dialysis and non-dialysis groups had similar flap survival rates (100% vs. 92.9%; p = .600). Twenty-three patients underwent take-back surgery, most in the non-dialysis group (14.3% vs. 15.0%; p = 1.000). Patients in the dialysis group were more likely to have prolonged intensive care unit stays; however, dialysis alone did not predict flap failure (OR: 0.83; p = .864). CONCLUSION: This study found no significant differences in free flap survival and take-back rates between patients with and without dialysis. Dialysis did not increase the risk of flap failure following microsurgical head and neck reconstruction in this study; however, prospective, randomized controlled trials are needed.


Subject(s)
Free Tissue Flaps , Head and Neck Neoplasms , Kidney Failure, Chronic , Microsurgery , Plastic Surgery Procedures , Renal Dialysis , Humans , Male , Female , Kidney Failure, Chronic/therapy , Kidney Failure, Chronic/complications , Middle Aged , Free Tissue Flaps/transplantation , Plastic Surgery Procedures/methods , Microsurgery/methods , Head and Neck Neoplasms/surgery , Head and Neck Neoplasms/complications , Aged , Retrospective Studies , Graft Survival , Risk Factors , Adult
6.
Regen Ther ; 26: 33-41, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38798745

ABSTRACT

Background: The morbidity and mortality of sepsis are increasing year by year. Statistically, 40-50% of patients with sepsis have concomitant myocardial injury, and its mortality rate is higher than that of patients with sepsis only. Therefore, it is of great significance to elucidate the mechanism of sepsis-induced myocardial injury. Methods and results: Human monocytes (THP-1) were used to induce M0 macrophages, followed by treated with lipopolysaccharide (LPS). Cardiomyocytes (AC16) were co-cultured with the conditioned medium of LPS-induced macrophages to induce injury. Quantitative real-time PCR was employed to detect the mRNA levels of peroxisome proliferator-activated receptor α (PPARA) and dual specificity phosphatase 1 (DUSP1). Protein levels of PPARA, macrophage polarization-related markers, apoptosis-related markers, mitochondria-related proteins, and DUSP1 were analyzed by Western blot. Flow cytometry was used to assess M1/M2 cell rates and apoptosis. Low PPARA expression could serve as a biomarker for patients with sepsis. PPARA overexpression enhanced M2 polarization and suppressed M1 polarization in LPS-induced macrophages, and it could alleviate cardiomyocyte injury in co-cultured system. PPARA bound to the DUSP1 promoter region and facilitated its expression. DUSP1 knockdown reversed the effect of PPARA overexpression on M2 polarization and cardiomyocyte injury. Conclusion: PPARA attenuated cardiomyocyte injury by promoting macrophage M2 polarization through increasing DUSP1 expression, suggesting that PPARA might be a therapy target for sepsis-induced myocardial injury.

7.
Small ; : e2311967, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38712482

ABSTRACT

Intracellular bacteria pose a great challenge to antimicrobial therapy due to various physiological barriers at both cellular and bacterial levels, which impede drug penetration and intracellular targeting, thereby fostering antibiotic resistance and yielding suboptimal treatment outcomes. Herein, a cascade-target bacterial-responsive drug delivery nanosystem, MM@SPE NPs, comprising a macrophage membrane (MM) shell and a core of SPE NPs. SPE NPs consist of phenylboronic acid-grafted dendritic mesoporous silica nanoparticles (SP NPs) encapsulated with epigallocatechin-3-gallate (EGCG), a non-antibiotic antibacterial component, via pH-sensitive boronic ester bonds are introduced. Upon administration, MM@SPE NPs actively home in on infected macrophages due to the homologous targeting properties of the MM shell, which is subsequently disrupted during cellular endocytosis. Within the cellular environment, SPE NPs expose and spontaneously accumulate around intracellular bacteria through their bacteria-targeting phenylboronic acid groups. The acidic bacterial microenvironment further triggers the breakage of boronic ester bonds between SP NPs and EGCG, allowing the bacterial-responsive release of EGCG for localized intracellular antibacterial effects. The efficacy of MM@SPE NPs in precisely eliminating intracellular bacteria is validated in two rat models of intracellular bacterial infections. This cascade-targeting responsive system offers new solutions for treating intracellular bacterial infections while minimizing the risk of drug resistance.

8.
Phys Rev Lett ; 132(18): 187202, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38759185

ABSTRACT

Constructing a highly localized wave field by means of bound states in the continuum (BICs) promotes enhanced wave-matter interaction and offers approaches to high-sensitivity devices. Elastic waves can carry complex polarizations and thus differ from electromagnetic waves and other scalar mechanical waves in the formation of BICs, which is yet to be fully explored and exploited. Here, we report the investigation of local resonance modes supported by a Lamb waveguide side-branched with two pairs of resonant pillars and show the emergence of two groups of elastic BICs with different polarizations or symmetries. Particularly, the two groups of BICs exhibit distinct responses to external perturbations, based on which a label-free sensing scheme with enhanced-sensitivity is proposed. Our study reveals the rich properties of BICs arising from the complex wave dynamics in elastic media and demonstrates their unique functionality for sensing and detection.

9.
Healthcare (Basel) ; 12(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38727463

ABSTRACT

Evidence-based practice (EBP) is an essential component of healthcare practice that ensures the delivery of high-quality care by integrating the best available evidence. This study aimed to explore factors influencing EBP among nursing professionals in Taiwan. A cross-sectional survey study was conducted with 752 registered nurses and nurse practitioners recruited from a regional teaching hospital in southern Taiwan. EBP competency was evaluated using the Taipei Evidence-Based Practice Questionnaire (TEBPQ). The results showed that participation in evidence-based courses or training within the past year had the strongest association with EBP competencies (Std. B = 0.157, p < 0.001). Holding a graduate degree (Std. B = 0.151, p < 0.001), working in gynecology or pediatrics (Std. B = 0.126, p < 0.001), searching the literature in electronic databases (Std. B = 0.072, p = 0.039), and able to read academic articles in English (Std. B = 0.088, p = 0.005) were significantly associated with higher TEBPQ scores. Younger age (Std. B = -0.105, p = 0.005) and male gender (Std. B = 0.089, p = 0.010) were also identified as factors contributing to higher EBP competencies. The study highlights the importance of ongoing professional development, including EBP training and language proficiency, in enhancing EBP competencies among nursing professionals in Taiwan.

10.
ChemSusChem ; : e202400827, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38785150

ABSTRACT

Ozonation water treatment technology has attracted increasing attention due to its environmental benign and high efficiency. Rutile PbO2 is a promising anode material for electrochemical ozone production (EOP). However, the reaction mechanism underlying ozone production catalyzed by PbO2 was rarely studied and not well-understood, which was in part due to the overlook of the electrochemistry-driven formation of oxygen vacancy (OV) of PbO2. Herein, we unrevealed the origin of the EOP activity of PbO2 starting from the electrochemical surface state analysis using density functional theory (DFT) calculations, activity analysis, and catalytic volcano modeling. Interestingly, we found that under experimental EOP potential (i.e., a potential around 2.2 V vs. reversible hydrogen electrode), OV can still be generated easily on PbO2 surfaces. Our subsequent kinetic and thermodynamic analyses show that these OV sites on PbO2 surfaces are highly active for the EOP reaction through an interesting atomic oxygen (O*)-O2 coupled mechanism. In particular, rutile PbO2(101) with the "in-situ" generated OV exhibited superior EOP activities, outperforming (111) and (110). Finally, by catalytic modeling, we found that PbO2 is close to the theoretical optimum of the reaction, suggesting a superior EOP performance of rutile PbO2. All these analyses are in good agreement with experimental observations.

11.
Heliyon ; 10(10): e31380, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38803927

ABSTRACT

Objective: Our aim was to develop and validate a nomogram for predicting the in-hospital 14-day (14 d) and 28-day (28 d) survival rates of patients with coronavirus disease 2019 (COVID-19). Methods: Clinical data of patients with COVID-19 admitted to the Renmin Hospital of Wuhan University from December 2022 to February 2023 and the north campus of Shanghai Ninth People's Hospital from April 2022 to June 2022 were collected. A total of 408 patients from Renmin Hospital of Wuhan University were selected as the training cohort, and 151 patients from Shanghai Ninth People's Hospital were selected as the verification cohort. Independent variables were screened using Cox regression analysis, and a nomogram was constructed using R software. The prediction accuracy of the nomogram was evaluated using the receiver operating characteristic (ROC) curve, C-index, and calibration curve. Decision curve analysis was used to evaluate the clinical application value of the model. The nomogram was externally validated using a validation cohort. Result: In total, 559 patients with severe/critical COVID-19 were included in this study, of whom 179 (32.02 %) died. Multivariate Cox regression analysis showed that age >80 years [hazard ratio (HR) = 1.539, 95 % confidence interval (CI): 1.027-2.306, P = 0.037], history of diabetes (HR = 1.741, 95 % CI: 1.253-2.420, P = 0.001), high APACHE II score (HR = 1.083, 95 % CI: 1.042-1.126, P < 0.001), sepsis (HR = 2.387, 95 % CI: 1.707-3.338, P < 0.001), high neutrophil-to-lymphocyte ratio (NLR) (HR = 1.010, 95 % CI: 1.003-1.017, P = 0.007), and high D-dimer level (HR = 1.005, 95 % CI: 1.001-1.009, P = 0.028) were independent risk factors for 14 d and 28 d survival rates, whereas COVID-19 vaccination (HR = 0.625, 95 % CI: 0.440-0.886, P = 0.008) was a protective factor affecting prognosis. ROC curve analysis showed that the area under the curve (AUC) of the 14 d and 28 d hospital survival rates in the training cohort was 0.765 (95 % CI: 0.641-0.923) and 0.814 (95 % CI: 0.702-0.938), respectively, and the AUC of the 14 d and 28 d hospital survival rates in the verification cohort was 0.898 (95 % CI: 0.765-0.962) and 0.875 (95 % CI: 0.741-0.945), respectively. The calibration curves of 14 d and 28 d hospital survival showed that the predicted probability of the model agreed well with the actual probability. Decision curve analysis (DCA) showed that the nomogram has high clinical application value. Conclusion: In-hospital survival rates of patients with COVID-19 were predicted using a nomogram, which will help clinicians in make appropriate clinical decisions.

12.
Biochem Genet ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806972

ABSTRACT

Infertility is a condition characterized by a low fertility rate, which significantly affects the physical and mental health of women of reproductive age. Typically, the treatment duration is prolonged, and the therapeutic outcomes are often unsatisfactory. Professor Cheng-yao He, a renowned expert in traditional Chinese medicine, commonly uses the herb Cnidii Fructus (SCZ) for the treatment of infertility. However, the exact mechanism remains unclear, and there is limited research available on this topic. The active ingredients of SCZ were obtained from the traditional chinese medicine system pharmacology (TCMSP) database and screened for pharmacokinetics (PK), involving absorption, distribution, metabolism, and excretion (ADME). Target prediction was performed by SwissTargetPrediction database, and infertility-related disease targets were searched in GeneCards, TTD, DrugBank, and OMIM database. The protein-protein interaction (PPI) network was constructed using the STRING database (Version 11.5) and analyzed by Cytoscape software (Version 3.9.1). Additionally, the target genes were subjected to biological enrichment analysis in the Metascape database, including gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis, and the "Disease-Ingredient-pathway-target" network was constructed using Cytoscape software. With the assistance of AutoDockVina, Ligplot, and PyMOL software, a validation of Molecular docking results and a visualization of the results were performed. This study identified 11 retained active ingredients of SCZ, 447 drug targets, 233 of which were related to infertility, and 5393 disease targets. GO enrichment analysis mainly involved 221 biological processes such as cellular response to chemical stress and gland development. KEGG enrichment analysis mainly involved 68 pathways such as thyroid hormone signaling pathway, estrogen signaling pathway, FOXO signaling pathway, and PI3K/Akt signaling pathway. Molecular docking showed that the core active ingredients of SCZ, including Ammidin, Diosmetin, Xanthoxylin N, and Prangenidin, had strong binding abilities with core targets such as MDM2, MTOR, CCND1, EGFR, and AKT1. This study preliminarily demonstrated that SCZ may act on the PI3K/Akt signaling pathway, exerting its therapeutic effects on infertility by improving energy metabolism disorders and endometrial receptivity, inducing primordial follicle activation, regulating oocyte proliferation, differentiation, and apoptosis, and promoting the release of dominant follicles.

13.
Bioorg Med Chem Lett ; 108: 129816, 2024 May 26.
Article in English | MEDLINE | ID: mdl-38806101

ABSTRACT

As our ongoing work, a novel series of the amide-based CA-4 analogues were successfully designed, synthesized, and explored for their biological evaluation. Among these compounds, 7d and 8a illustrated most potent antiproliferative activity toward A549, HeLa, HCT116, and HT-29 cell lines. Most importantly, these two compounds didn't display noticeable cytotoxic activity on the non-tumoural cell line HEK-293. Further mechanism studies revealed that analogue 8a was identified as a novel tubulin polymerization inhibitor with an IC50 value of 6.90 µM, which is comparable with CA-4. The subsequent investigations unveiled that analogue 8a not only effectively caused cell cycle arrest at the G2/M phase but also induced apoptosis in A549 cells via a concentration-dependent manner. The molecular docking revealed that 8a could occupy well the colchicine-binding site of tubulin. Collectively, these findings indicate that amide-based CA-4 scaffold could be worthy of further evaluation for development of novel tubulin inhibitors with improved safety profile.

14.
Article in English | MEDLINE | ID: mdl-38819683

ABSTRACT

PURPOSE: Taiwan, which has a rate of high vehicle ownership, faces significant challenges in managing trauma caused by traffic collisions. In Taiwan, traffic collisions contribute significantly to morbidity and mortality, with a high incidence of severe bleeding trauma. The shock index (SI) and the modified shock index (MSI) have been proposed as early indicators of hemodynamic instability. In this study, we aimed to assess the efficacy of SI and MSI in predicting adverse outcomes in patients with trauma following traffic collisions. METHODS: This retrospective cohort study was conducted at Chi Mei Hospital from January 2015 to December 2020. The comprehensive analysis included 662 patients, with data collected on vital signs and outcomes such as mortality, blood transfusion, emergent surgical intervention (ESI), transarterial embolization (TAE), and intensive care unit (ICU) admission. Optimal cutoff points for SI and MSI were identified by calculating the Youden index. Logistic regression analysis was used to assess outcomes, adjusting for demographic and injury severity variables. RESULTS: An SI threshold of 1.11 was associated with an increased risk of mortality, while an SI of 0.84 predicted the need for blood transfusion in the context of traffic collisions. Both SI and MSI demonstrated high predictive power for mortality and blood transfusion, with acceptable accuracy for TAE, ESI, and ICU admission. Logistic regression analyses confirmed the independence of SI and MSI as risk factors for adverse outcomes, thus, providing valuable insights into their clinical utility. CONCLUSIONS: SI and MSI are valuable tools for predicting mortality and blood transfusion needs in patients with trauma due to traffic collisions. These findings advance the quality of care for patients with trauma during their transition from the emergency room to the ICU, facilitating prompt and reliable decision-making processes and improving the care of patients with trauma.

15.
Curr Gene Ther ; 24(4): 292-306, 2024.
Article in English | MEDLINE | ID: mdl-38783529

ABSTRACT

BACKGROUND: Many studies have suggested that tea has antidepressant effects; however, the underlying mechanism is not fully studied. As the main anti-inflammatory polyphenol in tea, catechin may contribute to the protective role of tea against depression. OBJECTIVE: The objective of this study is to prove that catechin can protect against lipopolysaccharide (LPS)-induced depressive-like behaviours in mice, and then explore the underlying molecular mechanisms. METHODS: Thirty-one C57BL/6J mice were categorized into the normal saline (NS) group, LPS group, catechin group, and amitriptyline group according to their treatments. Elevated Plus Maze (EPM), Tail Suspension Test (TST), and Open Field Test (OFT) were employed to assess depressive- like behaviours in mice. RNA sequencing (RNA-seq) and subsequent Bioinformatics analyses, such as differential gene analysis and functional enrichment, were performed on the four mouse groups. RESULTS: In TST, the mice in the LPS group exhibited significantly longer immobility time than those in the other three groups, while the immobility times for the other three groups were not significantly different. Similarly in EPM, LPS-treated mice exhibited a significantly lower percentage in the time/path of entering open arms than the mice in the other three groups, while the percentages of the mice in the other three groups were not significantly different. In OFT, LPS-treated mice exhibited significantly lower percentages in the time/path of entering the centre area than those in the other three groups. The results suggested that the LPS-induced depression models were established successfully and catechin can reverse (LPS)-induced depressive-like behaviours in mice. Finally, RNA-seq analyses revealed 57 differential expressed genes (DEGs) between LPS and NS with 19 up-regulated and 38 down-regulated. Among them, 13 genes were overlapped with the DEGs between LPS and cetechin (in opposite directions), with an overlapping p-value < 0.001. The 13 genes included Rnu7, Lcn2, C4b, Saa3, Pglyrp1, Gpx3, Lyz2, S100a8, S100a9, Tmem254b, Gm14288, Hbb-bt, and Tmem254c, which might play key roles in the protection of catechin against LPS-induced depressive-like behaviours in mice. The 13 genes were significantly enriched in defense response and inflammatory response, indicating that catechin might work through counteracting changes in the immune system induced by LPS. CONCLUSION: Catechin can protect mice from LPS-induced depressive-like behaviours through affecting inflammatory pathways and neuron-associated gene ontologies.


Subject(s)
Behavior, Animal , Catechin , Depression , Lipopolysaccharides , Mice, Inbred C57BL , Animals , Lipopolysaccharides/toxicity , Lipopolysaccharides/adverse effects , Catechin/pharmacology , Mice , Depression/drug therapy , Depression/chemically induced , Depression/genetics , Male , Behavior, Animal/drug effects , Disease Models, Animal , Inflammation/drug therapy , Inflammation/genetics , Inflammation/chemically induced , Neurons/drug effects , Neurons/metabolism , Gene Expression Regulation/drug effects
16.
Langmuir ; 40(22): 11411-11418, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38778044

ABSTRACT

Enhanced electrokinetic phenomena, manifested through the observation of a large streaming potential (Vs), were obtained in microchannels with single-layer graphene (SLG)-coated and few-layer graphene (FLG)-coated surfaces. In comparison to silicon microchannels, the Vs obtained for a given pressure difference along the channel (ΔP) was higher by 75% for the graphene-based channels, with larger values in the SLG case. Computational modeling was used to correlate the surface charge density, tuned through plasma processing, and related zeta potential to measured Vs. The implications related to deploying lower dimensional material surfaces for modulating electrokinetic flows were investigated.

17.
RSC Adv ; 14(22): 15722-15729, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38746846

ABSTRACT

A high performance oxide composite electrode is obtained with a two-step solid state calcined titanium niobium oxide TiNb2O7 (TNO) anode and super P-carbon nanotube (SP-CNT) binary conductive agents. The solid state synthesized TNO-0.2C (the proportion of CNTs in the binary conductive agent is 20% wt) anode exhibits a high reversible discharge capacity of 278.6 mA h g-1 at 0.5C, a competitive rate capability with reported works that employed wet chemical methods at moderate rates (178.1 mA h g-1 at 10C), and an excellent capacity retention of 92.2% after 200 cycles at 1.5C/1.5C. The enhancement in electrochemical properties of the TNO-0.2C anode is mainly attributed to the combination of the short range and long range conductive agents in the SP-CNT binary conductive system, which guarantees an efficient electronic conductive network. The Li|Li1.3Al0.3Ti1.7(PO4)3 composite polymer electrolyte (LATPCPEs)|TNO-0.2C solid state batteries are also assembled, which deliver a high initial reversible discharge capacity of 241.3 mA h g-1 at 1C and a good capacity retention rate of 93% after 50 cycles. This work provides an efficient way to improve the electrochemical properties of TNO anodes in lithium ion batteries, especially for solid state batteries.

18.
Article in English | MEDLINE | ID: mdl-38787370

ABSTRACT

A Gram-stain-positive, aerobic, non-mobile and spherical strain, designated ZS9-10T, belonging to the genus Deinococcus was isolated from soil sampled at the Chinese Zhong Shan Station, Antarctica. Growth was observed in the presence of 0-4 % (w/v) NaCl, at pH 7.0-8.0 and at 4-25 °C. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain ZS9-10T formed a lineage in the genus Deinococcus. It exhibited highest sequence similarity (97.4 %) to Deinococcus marmoris DSM 12784T. The major phospholipids of ZS9-10T were unidentified phosphoglycolipid, unidentified glycolipids and unidentified lipids. The major fatty acids were summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), C16 : 0 and C16 : 1 ω7c. MK-8 was the predominant respiratory quinone. The digital DNA-DNA hybridization and average nucleotide identity values between strain ZS9-10T and its close relative D. marmoris DSM 12784T were 27.4 and 83.9 %, respectively. Based on phenotypic, phylogenetic and genotypic data, a novel species, named Deinococcus arenicola sp. nov., is proposed. The type strain iis ZS9-10T (=CCTCC AB 2019392T=KCTC43192T).


Subject(s)
Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Deinococcus , Fatty Acids , Nucleic Acid Hybridization , Phospholipids , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Soil Microbiology , Antarctic Regions , RNA, Ribosomal, 16S/genetics , Deinococcus/genetics , Deinococcus/classification , Deinococcus/isolation & purification , Fatty Acids/analysis , Fatty Acids/chemistry , DNA, Bacterial/genetics , Phospholipids/analysis , Phospholipids/chemistry , Vitamin K 2/analogs & derivatives , Vitamin K 2/analysis , Vitamin K 2/chemistry , Sand/microbiology
19.
Int J Urol ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38787505

ABSTRACT

OBJECTIVES: To evaluate demographic and clinical characteristics, treatment patterns, and quality of life in patients with locally advanced or metastatic urothelial carcinoma in Asia. METHODS: Data were drawn from the Adelphi Real World Metastatic Urothelial Carcinoma Disease Specific Programme™, a cross-sectional survey of medical oncologists/urologists and their adult patients in Saudi Arabia, South Korea, Taiwan, and Turkey. Exploratory patient-reported outcomes included the EQ-5D visual analog scale, European Organisation for Research and Treatment of Cancer Quality of Life of Patient Questionnaire global health, and Brief Pain Inventory. Analyses were descriptive. RESULTS: Overall, 175 physicians reported data for 988 patients. Mean (standard deviation) patient age was 66.3 (10.8) years, 77% were men, and 82% had bladder tumors at diagnosis. Of patients receiving first- (n = 988), second- (n = 290), and third-line (n = 87) treatments, 81%, 35%, and 59% received chemotherapy, respectively, and 17%, 63%, and 34% received programmed cell death protein 1/ligand 1 inhibitors, respectively. Patient-reported (n = 319) mean (standard deviation) EQ-5D visual analog scale score was 51.8 (15.6), European Organisation for Research and Treatment of Cancer Quality of Life of Patient Questionnaire global health status score was 44.6 (19.9), and Brief Pain Inventory score was 6.5 (1.9; n = 315). CONCLUSION: The most common first- and second-line treatments for locally advanced or metastatic urothelial carcinoma were chemotherapy and programmed cell death protein 1/ligand inhibitors, respectively. At third line, 10% of patients received best supportive care alone, underscoring an unmet need for effective third-line treatment options. Patients in all regions reported quality-of-life impairment.

20.
BMC Genomics ; 25(1): 431, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693480

ABSTRACT

Ophthalmic manifestations have recently been observed in acute and post-acute complications of COVID-19 caused by SARS-CoV-2 infection. Our precious study has shown that host RNA editing is linked to RNA viral infection, yet ocular adenosine to inosine (A-to-I) RNA editing during SARS-CoV-2 infection remains uninvestigated in COVID-19. Herein we used an epitranscriptomic pipeline to analyze 37 samples and investigate A-to-I editing associated with SARS-CoV-2 infection, in five ocular tissue types including the conjunctiva, limbus, cornea, sclera, and retinal organoids. Our results revealed dramatically altered A-to-I RNA editing across the five ocular tissues. Notably, the transcriptome-wide average level of RNA editing was increased in the cornea but generally decreased in the other four ocular tissues. Functional enrichment analysis showed that differential RNA editing (DRE) was mainly in genes related to ubiquitin-dependent protein catabolic process, transcriptional regulation, and RNA splicing. In addition to tissue-specific RNA editing found in each tissue, common RNA editing was observed across different tissues, especially in the innate antiviral immune gene MAVS and the E3 ubiquitin-protein ligase MDM2. Analysis in retinal organoids further revealed highly dynamic RNA editing alterations over time during SARS-CoV-2 infection. Our study thus suggested the potential role played by RNA editing in ophthalmic manifestations of COVID-19, and highlighted its potential transcriptome impact, especially on innate immunity.


Subject(s)
COVID-19 , RNA Editing , SARS-CoV-2 , Humans , COVID-19/genetics , COVID-19/virology , SARS-CoV-2/genetics , Adenosine/metabolism , Inosine/metabolism , Inosine/genetics , Transcriptome , Eye/metabolism , Eye/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...