Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 7(20): 2001677, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33101868

ABSTRACT

Nanoemulsions have become ideal candidates for loading hydrophobic active ingredients and enhancing their bioavailability in the pharmaceutical, food, and cosmetic industries. However, the lack of versatile carrier platforms for nanoemulsions hinders advanced control over their release behavior. In this work, a method is developed to encapsulate nanoemulsions in alginate capsules for the controlled delivery of lipophilic active ingredients. Functional nanoemulsions loaded with active ingredients and calcium ions are first prepared, followed by encapsulation inside alginate shells. The intrinsically high viscosity of the nanoemulsions ensures the formation of spherical capsules and high encapsulation efficiency during the synthesis. Moreover, a facile approach is developed to measure the nanoemulsion release profile from capsules through UV-vis measurement without an additional extraction step. A quantitative analysis of the release profiles shows that the capsule systems possess a tunable, delayed-burst release. The encapsulation methodology is generalized to other active ingredients, oil phases, nanodroplet sizes, and chemically crosslinked inner hydrogel cores. Overall, the capsule systems provide promising platforms for various functional nanoemulsion formulations.

2.
Langmuir ; 36(13): 3346-3355, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32216359

ABSTRACT

Nanoemulsions are widely used in applications such as food products, cosmetics, pharmaceuticals, and enhanced oil recovery for which the ability to engineer material properties is desirable. Moreover, nanoemulsions are emergent model colloidal systems because of the ease in synthesizing monodisperse samples, flexibility in formulations, and tunable material properties. In this work, we study a nanoemulsion system previously developed by our group in which gelation occurs through thermally induced polymer bridging of droplets. We show here that the same system can undergo a sol-gel transition at room temperature through the addition of salt, which screens the electrostatic interaction and allows the system to assemble via depletion attraction. We systematically study how the addition of salt followed by a temperature jump can influence the resulting microstructures and rheological properties of the nanoemulsion system. We show that the salt-induced gel at room temperature can dramatically restructure when the temperature is suddenly increased and achieves a different gelled state. Our results offer a route to control the material properties of an attractive colloidal system by carefully tuning the interparticle potentials and sequentially triggering the colloidal self-assembly. The control and understanding of the material properties can be used for designing hierarchically structured hydrogels and complex colloid-based materials for advanced applications.

3.
J Colloid Interface Sci ; 563: 229-240, 2020 Mar 15.
Article in English | MEDLINE | ID: mdl-31874310

ABSTRACT

Nanoemulsions are widely used in applications such as in food products, pharmaceutical ingredients and cosmetics. Moreover, nanoemulsions have been a model colloidal system due to their ease of synthesis and the flexibility in formulations that allows one to engineer the inter-droplet potentials and thus to rationally tune the material microstructures and rheological properties. In this article, we study a nanoemulsion system in which the inter-droplet interactions are modulated by temperature and pH. We develop a nanoemulsion suspension in which the droplets are stabilized by weak acid surfactants whose charged state can be independently controlled by temperature and pH, leading to a responsive electrostatic repulsion. Moreover, the additional poly(ethylene glycol) segment (PEG) on the surfactant gives rise to a temperature responsive attraction between droplets via PEG-PEG association and ion-dipole interaction. The interplay of these three interactions gives rise to non-monotonic trends in material properties and structures as a function of temperature. The underlying mechanism resulting in these trends is obtained by carefully characterizing the nanoemulsion droplets and studying the molecular interactions. Such mechanistic understanding also provides guidance to modulate the inter-droplet potential using pH and ionic strength. Moreover, the molecular understanding of the weak acid surfactant also sheds light on the destabilization of the nanoemulsion droplets triggered by a switch in pH. The control of the competition of attractive and repulsive interactions using external stimuli opens up the possibility to design complex nanoemulsion-based soft materials with controllable structures and rheological properties.

4.
Langmuir ; 35(29): 9464-9473, 2019 Jul 23.
Article in English | MEDLINE | ID: mdl-31298032

ABSTRACT

Colloidal systems that undergo gelation attract much attention in both fundamental studies and practical applications. Rational tuning of interparticle interactions allows researchers to precisely engineer colloidal material properties and microstructures. Here, contrary to the traditional approaches where modulating attractive interactions is the major focus, we present a platform wherein colloidal gelation is controlled by tuning repulsive interactions. By including amphiphilic oligomers in colloidal suspensions, the ionic surfactants on the colloids are replaced by the nonionic oligomer surfactants at elevated temperatures, leading to a decrease in electrostatic repulsion. The mechanism is examined by carefully characterizing the colloids, and subsequently allowing the construction of interparticle potentials to capture the material behaviors. With the thermally triggered surfactant displacement, the dispersion assembles into a macroporous viscoelastic network and the gelling mechanism is robust over a wide range of compositions, colloid sizes, and component chemistries. This stimulus-responsive gelation platform is general and offers new strategies to engineer complex viscoelastic soft materials.

5.
Soft Matter ; 14(27): 5604-5614, 2018 Jul 11.
Article in English | MEDLINE | ID: mdl-29923590

ABSTRACT

Many soft matter systems have properties which depend on their processing history. It is generally accepted that material properties can be finely tuned by carefully directing self-assembly. However, for gelling colloidal systems, it is difficult to characterize such path-dependent effects since the colloidal attraction is often provided by adding another component to the system such as salts or depletants. Therefore, studies of and an understanding of the role of processing on the material properties of attractive colloidal systems are largely lacking. In this work, we systematically studied how processing greatly influences the properties and the microstructures of model attractive colloidal systems. We perform experiments using a thermogelling nanoemulsion as a model system where the isotropic attraction can be precisely tuned via the temperature. The effects of processing conditions on gel formation and properties is tested by performing well-designed sequential temperature jumps. By properly controlling the thermal history, we demonstrate that properties of colloidal gels can be beyond the limit set by direct quenching, which has been a major focus in literature, and that otherwise slow aging of the system associated with a decrease in elasticity can be prevented. Our results provide new experimental evidence of path-dependent rheology and associated microstructures in attractive colloidal systems and provide guidance to future applications in manufacturing complex colloid-based materials.

6.
Soft Matter ; 13(37): 6606-6619, 2017 Sep 27.
Article in English | MEDLINE | ID: mdl-28914324

ABSTRACT

We perform multiple particle tracking (MPT) on a thermally-gelling oil-in-water nanoemulsion system. Carboxylated and plain polystyrene probes are used to investigate the role of colloidal probe size and surface chemistry on MPT in the nanoemulsion system. As temperature increases, hydrophobic groups of PEG-based gelators (PEGDA) partition into the oil/water interface and bridge droplets. This intercolloidal attraction generates a wide variety of microstructures consisting of droplet-rich and droplet-poor phases. By tailoring the MPT colloidal probe surface chemistry, we can control the residence of probes in each domain, thus allowing us to independently probe each phase. Our results show stark differences in probe dynamics in each domain. For certain conditions, the mean squared displacement (MSD) can differ by over four orders of magnitude for the same probe size but different surface chemistry. Carboxylated probe surface chemistries result in "slippery" probes while plain polystyrene probes appear to tether to the nanoemulsion gel network. We also observe probe hopping between pores in the gel for carboxylated probes. Our approach demonstrates that probes with different surface chemistries are useful in probing the local regions of a colloidal gel and allows the measurement of local properties within structurally heterogeneous hydrogels.

7.
Soft Matter ; 13(5): 921-929, 2017 Feb 07.
Article in English | MEDLINE | ID: mdl-28094392

ABSTRACT

Spinodal decomposition and phase transitions have emerged as viable methods to generate a variety of bicontinuous materials. Here, we show that when arrested phase separation is coupled to the time scales involved in three-dimensional (3D) printing processes, hydrogels with multiple length scales spanning nanometers to millimeters can be printed with high fidelity. We use an oil-in-water nanoemulsion-based ink with rheological and photoreactive properties that satisfy the requirements of stereolithographic 3D printing. This ink is thermoresponsive and consists of poly(dimethyl siloxane) droplets suspended in an aqueous phase containing the surfactant sodium dodecyl sulfate and the cross-linker poly(ethylene glycol) dimethacrylate. Control of the hydrogel microstructure can be achieved in the printing process due to the rapid structural recovery of the nanoemulsions after large strain-rate yielding, as well as the shear thinning behavior that allows the ink to conform to the build platform of the printer. Wiper operations are used to ensure even spreading of the yield stress ink on the optical window between successive print steps. Post-processing of the printed samples is used to generate mesoporous hydrogels that serve as size-selective membranes. Our work demonstrates that nanoemulsions, which belong to a class of solution-based materials with flexible functionalities, can be printed into prototypes with complex shapes using a commercially available 3D printer with a few modifications.

SELECTION OF CITATIONS
SEARCH DETAIL
...