Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
Water Res ; 261: 122039, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39024800

ABSTRACT

Membrane fouling has always been a critical constraint in the operation of the reverse osmosis (RO) process, and chemical cleaning is essential for mitigating membrane fouling and ensuring smooth operation of the membrane system. This paper presents an optimized chemical cleaning method for the efficient cleaning of RO membranes in full-scale applications. Compared to the regular cleaning method (cleaning with 0.1 % NaOH + 1 % ethylenediaminetetraacetic acid + 0.025 % sodium dodecyl benzene sulfonate followed by 0.2 % HCl), the optimized cleaning method improves the cleaning efficiency by adding sodium chloride to the alkaline cleaning solution and citric acid to the acid cleaning solution. Notably, the membrane flux recovery rate with the optimized cleaning method is 45.74 %, and it improves the cleaning efficiency by 1.65 times compared to the regular cleaning method. Additionally, the optimized cleaning method removes 30.46 % of total foulants (organic and inorganic), which is 2.11 times higher than the regular cleaning method. The removal of inorganic ions such as Fe, Ca, and Mg is significantly improved with the optimized cleaning method. For organic matter removal, the optimized cleaning method effectively removes more polysaccharides, proteins, and microbial metabolites by disrupting the complex structures of organic matter. Furthermore, it also changes the microbial community structure on the RO membrane surface by eliminating microorganisms that cannot withstand strong acids, bases, and high salt environments. However, Mycobacterium can adapt to these harsh conditions, showing a relative abundance of up to 84.13 % after cleaning. Overall, our results provide a new chemical cleaning method for RO membranes in full-scale applications. This method effectively removes membrane foulants and enhances the understanding of the removal characteristics of foulants on RO membrane surfaces by chemical cleaning.

2.
Brain Res ; 1841: 149087, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38871241

ABSTRACT

Three-needle electroacupuncture (TNEA) has shown promise as a non-pharmacological treatment for post-stroke depression (PSD). However, the underlying mechanisms of its therapeutic effects remain unclear. In this study, we investigated the potential molecular and synaptic mechanisms by which TNEA ameliorates depressive-like behaviors in a mouse model of PSD. Male C57BL/6 mice were subjected to middle cerebral artery occlusion (MCAO) to induce PSD and subsequently treated with TNEA for three weeks at specific acupoints (GV24 and bilateral GB13). Through a combination of behavioral tests, neuronal activation assessment, synaptic function examination, transcriptomic analysis, and various molecular techniques, we found that TNEA treatment significantly improved anxiety and depressive-like behaviors in PSD mice. These improvements were accompanied by enhanced neuronal activation in the medial prefrontal cortex (mPFC) and primary somatosensory cortex (PSC), as well as the promotion of excitatory synapse formation and transmission function in the mPFC. Transcriptomic analysis revealed that TNEA upregulated the expression of Netrin-G Ligand-3 (NGL-3), a postsynaptic cell adhesion molecule, in the mPFC. Further investigation showed that the extracellular domain of NGL-3 binds to the presynaptic protein L1cam, promoting the formation of Vesicular Glutamate Transporter 1 (vGluT1) puncta on neuronal dendrites. Notably, cortical neuron-specific knockout of NGL-3 abolished the antidepressant-like effects of TNEA in PSD mice, confirming the crucial role of the NGL-3/L1cam pathway in mediating the therapeutic effects of TNEA. These findings provide novel insights into the molecular and synaptic mechanisms underlying the therapeutic effects of acupuncture in the treatment of PSD and highlight the potential of targeting the NGL-3/L1cam pathway for the development of alternative interventions for PSD and other depressive disorders.

3.
Microorganisms ; 12(6)2024 May 31.
Article in English | MEDLINE | ID: mdl-38930504

ABSTRACT

This study extensively analyzed the bacterial information of biofilms and activated sludge in oxic reactors of full-scale moving bed biofilm reactor-integrated fixed-film activated sludge (MBBR-IFAS) systems. The bacterial communities of biofilms and activated sludge differed statistically (R = 0.624, p < 0.01). The denitrifying genera Ignavibacterium, Phaeodactylibacter, Terrimonas, and Arcobacter were more abundant in activated sludge (p < 0.05), while comammox Nitrospira was more abundant in biofilms (p < 0.05), with an average relative abundance of 8.13%. Nitrospira and Nitrosomonas had weak co-occurrence relationships with other genera in the MBBR-IFAS systems. Potential function analysis revealed no differences in pathways at levels 1 and 2 based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) between biofilms and activated sludge. However, in terms of pathways at level 3, biofilms had more potential in 26 pathways, including various organic biodegradation and membrane and signal transportation pathways. In comparison, activated sludge had more potential in only five pathways, including glycan biosynthesis and metabolism. With respect to nitrogen metabolism, biofilms had greater potential for nitrification (ammonia oxidation) (M00528), and complete nitrification (comammox) (M00804) concretely accounted for methane/ammonia monooxygenase (K10944, K10945, and K10946) and hydroxylamine dehydrogenase (K10535). This study provides a theoretical basis for MBBR-IFAS systems from the perspective of microorganisms.

4.
Materials (Basel) ; 17(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38730755

ABSTRACT

The production of wheat straw waste board materials encounters challenges, including inadequate inherent adhesiveness and the utilization of environmentally harmful adhesives. Employing a hot-pressed method for converting wheat straw into board materials represents a positive stride towards the resourceful utilization of agricultural wastes. This study primarily focuses on examining the influence of hot-pressing process conditions on the mechanical properties of wheat straw board materials pretreated with dilute acid. Additionally, it assesses the necessity of dilute acid treatment and optimizes the hot-pressing conditions to achieve optimal results at 15 MPa, 2 h, and 160 °C. Furthermore, a comprehensive process is developed for preparing wheat straw hot-pressed board materials by combining dilute acid pretreatment with surface modification treatments, such as glutaraldehyde, citric acid, and rosin. Finally, a thorough characterization of the mechanical properties of the prepared board materials is conducted. The results indicate a substantial improvement in tensile strength across all modified wheat straw board materials compared to untreated ones. Notably, boards treated with glutaraldehyde exhibited the most significant enhancement, achieving a tensile strength of 463 kPa, bending strength of 833 kPa, and a water absorption rate of 14.14%. This study demonstrates that combining dilute acid pretreatment with surface modification treatments effectively enhances the performance of wheat straw board materials, offering a sustainable alternative to traditional wood-based board materials.

5.
ChemSusChem ; : e202400827, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38785150

ABSTRACT

Ozonation water treatment technology has attracted increasing attention due to its environmental benign and high efficiency. Rutile PbO2 is a promising anode material for electrochemical ozone production (EOP). However, the reaction mechanism underlying ozone production catalyzed by PbO2 was rarely studied and not well-understood, which was in part due to the overlook of the electrochemistry-driven formation of oxygen vacancy (OV) of PbO2. Herein, we unrevealed the origin of the EOP activity of PbO2 starting from the electrochemical surface state analysis using density functional theory (DFT) calculations, activity analysis, and catalytic volcano modeling. Interestingly, we found that under experimental EOP potential (i. e., a potential around 2.2 V vs. reversible hydrogen electrode), OV can still be generated easily on PbO2 surfaces. Our subsequent kinetic and thermodynamic analyses show that these OV sites on PbO2 surfaces are highly active for the EOP reaction through an interesting atomic oxygen (O*)-O2 coupled mechanism. In particular, rutile PbO2(101) with the "in-situ" generated OV exhibited superior EOP activities, outperforming the (111) and (110) surfaces. Finally, by catalytic volcano modeling, we found that PbO2 is close to the theoretical optimum of the reaction, suggesting a superior EOP performance of rutile PbO2. All these analyses are in good agreement with previous experimental observations in terms of EOP overpotentials. This study provides the first volcano model to explain why rutile PbO2 is among the best metal oxide materials for EOP and provides new design guidelines for this rarely studied but industrially promising reaction.

6.
Front Microbiol ; 15: 1373119, 2024.
Article in English | MEDLINE | ID: mdl-38694801

ABSTRACT

An innovative inbuilt moving bed biofilm reactor (MBBR) was created to protect fish from nitrogen in a household aquarium. During the 90 experimental days, the ammonia nitrogen (NH4+-N) concentration in the aquarium with the inbuilt MBBR was always below 0.5 mg/L, which would not threaten the fish. Concurrently, nitrite and nitrate nitrogen concentrations were always below 0.05 mg/L and 4.5 mg/L, respectively. However, the blank contrast aquarium accumulated 1.985 mg/L NH4+-N on the 16th day, which caused the fish to die. The suspended biofilms could achieve the specific NH4+-N removal rate of 45.43 g/m3/d. Biofilms presented sparsely with filamentous structures and showed certain degrees of roughness. The bacterial communities of the suspended biofilms and the sediment were statistically different (p < 0.05), reflected in denitrifying and nitrifying bacteria. In particular, the relative abundance of Nitrospira reached 1.4%, while the genus was barely found in sediments. The suspended biofilms showed potentials for nitrification function with the predicted sequence numbers of ammonia monooxygenase [1.14.99.39] and hydroxylamine dehydrogenase [EC:1.7.2.6] of 220 and 221, while the values of the sediment were only 5 and 1. This study created an efficient NH4+-N removal inbuilt MBBR for household aquariums and explored its mechanism to afford a basis for its utilization.

7.
Environ Sci Pollut Res Int ; 31(24): 35609-35618, 2024 May.
Article in English | MEDLINE | ID: mdl-38739337

ABSTRACT

The water crisis may be solved by utilizing reclaimed water. Three reclaimed water sources have restored the lower sections of the Licun River, forming a landscaped river. In this paper, the river's water quality was monitored for a year, and the ecological concerns were analyzed using luminescent bacteria, chlorella, and zebrafish. The results indicated that although basic water quality indicators like COD and ammonia fluctuated along the river, the classification of water quality was primarily affected by factors such as flow rate and water depth. Under experimental conditions, the toxic inhibitory effect of river water on luminescent bacteria, chlorella, and zebrafish was related to the treatment process of reclaimed water. It was found that the reclaimed water produced by the MBR, along with the UV disinfection process, showed no detectable toxicity. In contrast, the MBBR process, when combined with coagulation, sedimentation, filtration, ozonation, and chlorination, seemed to be the source of this toxicity. Along the river, the results of water quality assessments and ecological risk assessments were different, indicating that both should be conducted to evaluate rivers replenished with reclaimed water.


Subject(s)
Rivers , Water Quality , Rivers/chemistry , China , Risk Assessment , Animals , Environmental Monitoring , Zebrafish , Water Pollutants, Chemical/analysis
8.
Chemosphere ; 353: 141550, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38408572

ABSTRACT

The harvesting of plants is considered an effective method for nutrient recovery in constructed wetlands (CWs). However, excessive plant harvesting can lead to a decrease in plant biomass. It remains unclear what harvesting frequency can optimize plant nutrient uptake and pollutant removal. In this study, CWs planted with Myriophyllum aquaticum were constructed, and three different frequencies of plant harvesting (high: 45 days/time; low: 90 days/time; none: CK) were set to investigate nitrogen removal and its influencing mechanism, as well as the capacity for plant nutrient recovery. The results showed that the average removal efficiencies of ammonia nitrogen (NH4+-N) at 45 days/time, 90 days/time, and CK were 90.3%, 90.8%, and 88.3% respectively, while the corresponding total nitrogen (TN) were 61.2%, 67.4%, and 67.4%. Dissolved oxygen (DO) concentration and water temperature were identified as the main environmental factors affecting nitrogen removal efficiency. Low harvest frequency (90 days/time) increased DO concentration and NH4+-N removal efficiency without impacting TN removal. Additionally, TN recovery from plants under high and low harvest was found to be approximately 9.21-9.32 times higher than that from no harvest conditions. The above studies indicated that a harvest frequency of every 90 days was one appropriate option for M. aquaticum, which not only increased NH4+-N removal efficiencies but also facilitated more efficient nitrogen recovery from the wetland system.


Subject(s)
Nitrogen , Water Purification , Wetlands , Waste Disposal, Fluid/methods , Denitrification , Water Purification/methods
9.
Bioresour Technol ; 393: 130174, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38072081

ABSTRACT

As dosing additives benefit for aerobic granular sludge (AGS) cultivation, effects of different concentrations (0, 10, 50 and 100 mg/L) of magnetic nanoparticles (Fe3O4 NPs) on aerobic granulation, contaminant removal and potential microbial community evolution related to acyl-homoserine lactones (AHLs) mediated bacterial communication were investigated with municipal wastewater. Results showed that the required time to achieve granulation ratio > 70 % was reduced by 60, 90 and 30 days in phase II with addition of 10, 50, 100 mg/L Fe3O4 NPs, respectively. 50 mg/L Fe3O4 NPs can improve contaminant removal efficiency. The promotion of relative abundance of AHLs-producing and AHLs-producing/quenching populations and AHLs-related functional genes accompanied with faster granulation. Iron-cycling-related bacteria were closely related with AHLs-related bacteria during AGS formation. Co-occurrence network analyses showed that AHLs-mediated communication may play an important role in coordinating microbial community composition and functional bacteria participating in nitrogen and polyphosphate metabolisms during aerobic granulation process.


Subject(s)
Magnetite Nanoparticles , Microbiota , Acyl-Butyrolactones/metabolism , Bacteria/metabolism , Bioreactors/microbiology , Quorum Sensing , Sewage/microbiology
10.
Sci Total Environ ; 884: 163865, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37142014

ABSTRACT

Reclaimed water from municipal wastewater has great potential in mitigating the water resource crisis, while the inevitable residue of organic micropollutants (OMPs) challenges the safety of reclaimed water reuse. Limited information was available regarding the overall adverse effects of mixed OMPs in reclaimed water, especially the endocrine-disrupting effects on living organisms. Herein, chemical monitoring in two municipal wastewater treatment plants showed that 31 of 32 candidate OMPs including polycyclic aromatic hydrocarbons (PAHs), phenols, pharmaceuticals and personal care products (PPCPs) were detected in reclaimed water, with a concentration ranging from ng/L to µg/L. Then, based on the risk quotient value, phenol, bisphenol A, tetracycline, and carbamazepine were ranked as high ecological risks. Most PAHs and PPCPs were quantified as medium and low risks, respectively. More importantly, using aquatic vertebrate zebrafish as an in vivo model, the endocrine-disrupting potentials of OMP mixtures were comprehensively characterized. We found that a realistic exposure to reclaimed water induced estrogen-like endocrine disruption and hyperthyroidism in zebrafish, abnormal expression of genes along the hypothalamus-pituitary-thyroid (-gonad) axes, reproductive impairment, and transgenerational toxicity. Based on the chemical analyses, risk quotient calculations, and biotoxicity characterization, this study contributed to understanding the ecological risks of reclaimed water and developing the control standards for OMPs. In addition, application of the zebrafish model in this study also highlighted the significance of in vivo biotoxicity test in water quality evaluation.


Subject(s)
Water Pollutants, Chemical , Zebrafish , Animals , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Estrogens/analysis , Wastewater , Risk Assessment
11.
Int J Mol Sci ; 24(6)2023 Mar 18.
Article in English | MEDLINE | ID: mdl-36982895

ABSTRACT

The desert moss Syntrichia caninervis has proven to be an excellent plant material for mining resistance genes. The aldehyde dehydrogenase 21 (ScALDH21) gene from S. caninervis has been shown to confer tolerance to salt and drought, but it is unclear how the transgene ScALDH21 regulates tolerance to abiotic stresses in cotton. In the present work, we studied the physiological and transcriptome analyses of non-transgenic (NT) and transgenic ScALDH21 cotton (L96) at 0 day, 2 days, and 5 days after salt stress. Through intergroup comparisons and a weighted correlation network analysis (WGCNA), we found that there were significant differences between NT and L96 cotton in the plant hormone, Ca2+, and mitogen-activated protein kinase (MAPK) signaling pathways as well as for photosynthesis and carbohydrate metabolism. Overexpression of ScALDH21 significantly increased the expression of stress-related genes in L96 compared to NT cotton under both normal growth and salt stress conditions. These data suggest that the ScALDH21 transgene can scavenge more reactive oxygen species (ROS) in vivo relative to NT cotton and improve cotton resistance to salt stress by increasing the expression of stress-responsive genes, responding quickly to stress stimuli, enhancing photosynthesis and improving carbohydrate metabolism. Therefore, ScALDH21 is a promising candidate gene to improve resistance to salt stress, and the application of this gene in cotton provides new insights into molecular plant breeding.


Subject(s)
Bryophyta , Bryopsida , Transcriptome , Salt Tolerance/genetics , Bryophyta/genetics , Bryopsida/genetics , Salt Stress , Stress, Physiological/genetics , Gossypium/genetics , Gossypium/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
12.
Water Res ; 229: 119395, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36463677

ABSTRACT

Membrane fouling was still a challenge for the potential application of forward osmosis (FO) in algae dewatering. In this study, the fouling behaviors of Chlorella vulgaris and Scenedesmus obliquus were compared in the FO membrane filtration process, and the roles of their soluble-extracellular polymeric substances (sEPS) and bound-EPS (bEPS) in fouling performance were investigated. The results showed that fouling behaviors could be divided into two stages including a quickly dropped and later a stable process. The bEPS of both species presented the highest flux decline (about 40.0%) by comparison with their sEPS, cells and broth. This performance was consistent with the largest dissolved organic carbon losses in feed solutions, and the highest interfacial free energy analyzed by the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory. The chemical characterizations of algal foulants further showed that the severe fouling performance was also consistent with a proper ratio of carbohydrates and proteins contents in the cake layer, as well as the higher low molecular weight (LMW) components. Compared with the bEPS, the sEPS was crucial for the membrane fouling of S. obliquus, and an evolution of the membrane fouling structure was found in both species at the later filtration stage. This work clearly revealed the fundamental mechanism of FO membrane fouling caused by real microalgal suspension, and it will improve our understanding of the evolutionary fouling performances of algal EPS.


Subject(s)
Chlorella vulgaris , Microalgae , Water Purification , Extracellular Polymeric Substance Matrix , Membranes, Artificial , Water Purification/methods , Osmosis
13.
Bioresour Technol ; 361: 127729, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35931282

ABSTRACT

To explore the microbial nitrogen metabolism of a two-stage anoxic/oxic (A/O)-moving bed biofilm reactor (MBBR), biofilms of the system's chambers were analyzed using metagenomic sequencing. Significant differences in microbial populations were found among the pre-anoxic, oxic and post-anoxic MBBRs (P < 0.01). Nitrospira and Nitrosomonas had positive correlations with ammonia nitrogen (NH4+-N) removal, and were also predominant in oxic MBBRs. These organisms were the hosts of functional genes for nitrification. The denitrifying genera were predominant in anoxic MBBRs, including Thiobacillus and Sulfurisoma in pre-anoxic MBBRs and Dechloromonas and Thauera in post-anoxic MBBRs. The four genera had positive correlations with total nitrate and nitrite nitrogen (NOX--N) removal and were the hosts of functional genes for denitrification. Specific functional biofilms with different microbial nitrogen metabolisms were formed in each chamber of this system. This work provides a microbial theoretical support for the two-stage A/O-MBBR system.


Subject(s)
Nitrogen , Water Purification , Biofilms , Bioreactors , Denitrification , Nitrification , Nitrogen/metabolism , Sewage , Waste Disposal, Fluid , Wastewater
14.
Chemosphere ; 303(Pt 3): 135195, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35667503

ABSTRACT

A two-stage anoxic/oxic (A/O)-moving bed biofilm reactor (MBBR) system with multiple chambers was established for municipal wastewater treatment. At the total hydraulic retention time (HRT) of 11.2 h and nitrate recycling ratio of 1, the removal efficiencies reached 83.8%, 82.5%, and 77.8% for soluble chemical oxygen demand (SCOD), 98.0%, 97.5%, and 94.9% for ammonia nitrogen (NH4+-N), and 91.8%, 92.0%, and 87.7% for total inorganic nitrogen (TIN) in summer, autumn and winter, respectively. Biofilms with functional bacterial populations were formed in the pre-anoxic reactors, the pre-oxic reactors, the post-anoxic reactors and the post-oxic reactors of the two-stage A/O-MBBR system. The highest nitrification potential was found in the last oxic reactor of the first A/O-MBBR subsystem with the highest relative abundances of the functional genes including [EC:1.14.99.39] and [EC:1.7.2.6]). The highest denitrification potential was found in the post-anoxic reactors with the highest relative abundances of the functional genes including [EC:1.7.2.1], [EC:1.7.2.5] and [EC:1.7.2.4]. This work constructed an efficient municipal biological nitrogen removal technology to achieve high effluent nitrogen standards in winter, and investigated its working mechanism to provide a basis for its design and optimization.


Subject(s)
Denitrification , Nitrogen , Biofilms , Bioreactors , Nitrification , Sewage , Waste Disposal, Fluid , Wastewater
15.
Sci Total Environ ; 821: 153521, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35104511

ABSTRACT

Generation of size-segregated aerosols is an important eco-environmental problem in wastewater treatment plants (WWTPs), but the characteristics of potential pathogens and antibiotic resistomes in submicron aerosols (PM1.0) were almost unknown. Here, 16S rRNA gene amplification and shotgun metagenome sequencing were respectively used to study the profiles of potential pathogens and antibiotic resistance genes (ARGs) in PM1.0 from a full-scale WWTP. Acinetobacter and sul1 were respectively the predominant potential pathogens and ARG subtypes in PM1.0 from aeration process. A total of 9 potential pathogens and 147 ARG subtypes, were shared among WWTP-PM1.0, wastewater/sludge, and ambient air. Significant differences of potential pathogens or ARGs were found between WWTP-PM1.0 and wastewater/sludge, however, wastewater/sludge had more crucial source contribution than the ambient air. Moreover, 13 potential pathogens and 40 ARG subtypes were easily aerosolized in PM1.0 from at least one of the treatment units. ARGs were mainly harbored by Proteobacteria, and multidrug resistance genes were the most ARG type carried by potential pathogens. Taken together, this study indicates the prevalence of potential pathogens, ARGs, and ARG-carrying potential pathogens in WWTP-PM1.0, which highlights the potential risk of PM1.0 in spreading potential pathogens and antibiotic resistomes into the air environments.


Subject(s)
Sewage , Wastewater , Aerosols , Anti-Bacterial Agents/pharmacology , Genes, Bacterial , RNA, Ribosomal, 16S , Sewage/microbiology , Wastewater/microbiology
16.
J Healthc Eng ; 2022: 1872412, 2022.
Article in English | MEDLINE | ID: mdl-35178222

ABSTRACT

In this paper, we mainly adopted 337 patients who had undergone the surgery on lymph node metastasis of papillary thyroid carcinoma (PTC) as the sample population. In order to provide clinical reference for the intelligent decision-making in treatment plan and improvement of prognosis, we utilized ultrasound features and imaging features to construct five early diagnosis models for patients based on the ultrasound features, imaging features, and combined features. The model integrated with broad learning system (BLS) showed the best performance, with the area under the curve (AUC) of 0.857 (95% confidence interval (CI): 0.811-0.902)) and the accuracy of 0.805 (95% CI: 0.759-0.850). For demographic and clinical features, the prediction effect was also good, with the AUC more than 0.700.


Subject(s)
Thyroid Neoplasms , Humans , Lymph Nodes/diagnostic imaging , Lymph Nodes/pathology , Lymphatic Metastasis/diagnostic imaging , Lymphatic Metastasis/pathology , Thyroid Cancer, Papillary/diagnostic imaging , Thyroid Cancer, Papillary/pathology , Thyroid Neoplasms/diagnostic imaging , Ultrasonography/methods
17.
Zhongguo Dang Dai Er Ke Za Zhi ; 23(12): 1282-1288, 2021 Dec 15.
Article in English, Chinese | MEDLINE | ID: mdl-34911614

ABSTRACT

OBJECTIVES: To study the role of adrenomedullin (ADM) in hyperoxia-induced lung injury by examining the effect of ADM on the expression of calcitonin receptor-like receptor (CRLR), receptor activity-modifying protein 2 (RAMP2), extracellular signal-regulated kinase (ERK), and protein kinase B (PKB) in human pulmonary microvascular endothelial cells (HPMECs) under different experimental conditions. METHODS: HPMECs were randomly divided into an air group and a hyperoxia group (n=3 each).The HPMECs in the hyperoxia group were cultured in an atmosphere of 92% O2 (3 L/minute) +5% CO2. RT-qPCR and Western blot were used to measure the mRNA and protein expression levels of ADM, CRLR, RAMP2, ERK1/2, and PKB. Other HPMECs were divided into a non-interference group and an interference group (n=3 each), and the mRNA and protein expression levels of ADM, ERK1/2, and PKB were measured after the HPMECs in the interference group were transfected with ADM siRNA. RESULTS: Compared with the air group, the hyperoxia group had significant increases in the mRNA and protein expression levels of ADM, CRLR, RAMP2, ERK1/2, and PKB (P<0.05). Compared with the non-interference group, the interference group had significant reductions in the mRNA and protein expression levels of ADM, ERK1/2, and PKB (P<0.05). CONCLUSIONS: ERK1/2 and PKB may be the downstream targets of the ADM signaling pathway. ADM mediates the ERK/PKB signaling pathway by regulating CRLR/RAMP2 and participates in the protection of hyperoxia-induced lung injury.


Subject(s)
Hyperoxia , Lung Injury , Adrenomedullin/genetics , Endothelial Cells , Humans , Hyperoxia/complications , Receptor Activity-Modifying Proteins
18.
Top Curr Chem (Cham) ; 379(6): 42, 2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34668085

ABSTRACT

Esters and their derivatives are distributed widely in natural products, pharmaceuticals, fine chemicals and other fields. Esters are important building blocks in pharmaceuticals such as clopidogrel, methylphenidate, fenofibrate, travoprost, prasugrel, oseltamivir, eszopiclone and fluticasone. Therefore, esterification reaction becomes more and more popular in the photochemical field. In this review, we highlight three types of reactions to synthesize esters using photochemical strategies. The reaction mechanisms involve mainly single electron transfer, energy transfer or other radical procedures.


Subject(s)
Esters , Catalysis , Electron Transport , Energy Transfer
19.
J Hazard Mater ; 416: 125833, 2021 08 15.
Article in English | MEDLINE | ID: mdl-34492791

ABSTRACT

Aerosol emissions from wastewater treatment plants (WWTPs) have been associated with health reverberation but studies about characteristics of size-segregated aerosol particulate matter (PM) are scarce. In this study, the measurement of particulate number size distribution in the range of < 10 µm, and the collection of PM10-2.5, PM2.5-1.0 and PM1.0, were conducted from an aerobic moving bed biofilm reactor (MBBR) at a full-scale WWTP. MBBR aerosols showed a unimodal number size distribution, with the majority of particles (>94%) in the ultrafine size range (<100 nm). For toxic metal(loid)s or potential pathogens, significant differences were found within MBBR aerosols (PM10-2.5, PM2.5-1.0, and PM1.0), and also between MBBR aerosols and wastewater. Both wastewater and ambient air had important source contributions for MBBR aerosols. The compositions of toxic metal(loid)s in PM1.0, and the populations of potential bacterial or fungal pathogens in PM10-2.5 and PM2.5-1.0, were dominated by that from wastewater. Compared to PM10-2.5 and PM2.5-1.0, PM1.0 had the highest aerosolization potential for the toxic metal(loid)s of As, Cd, Co, Cr, Li, Mn, Ni, U, and Zn, and the genera of Acinetobacter, Pseudomonas and Fusarium. Due to the size-segregated specialty, targeted measures should be employed to reduce the health risks. CAPSULE: The compositions of toxic metal(loid)s in PM1.0, and the populations of potential pathogens in PM10-2.5 and PM2.5-1.0, were dominated by that from wastewater.


Subject(s)
Biofilms , Water Purification , Aerosols/analysis , Bioreactors , Particulate Matter
20.
Bioengineered ; 12(1): 4032-4043, 2021 12.
Article in English | MEDLINE | ID: mdl-34288822

ABSTRACT

Increasing evidence has confirmed the vital roles of circular RNAs (CircRNAs) in the drug resistance of breast cancer (BC). Herein, we intended to study the effect of circular RNA FAT atypical cadherin 1 (circFAT1) on BC oxaliplatin (OX) resistance and find out the potential molecular mechanism in it. In this study, mRNA and protein levels of genes were measured by RT-qPCR and western blotting, respectively. Luciferase reporter assay confirmed the relationship between microRNA-525-5p (miR-525-5p) and circFAT1 or spindle and kinetochore-associated complex subunit 1 (SKA1). CCK-8, transwell, and flow cytometry experiments were utilized to investigate the chemosensitivity, migration, invasion, and apoptosis of BC cells. Gene Set Enrichment Analysis (GSEA) was applied to discover possible pathways related to SKA1. It was uncovered that circFAT1 was overexpressed in OX-resistant BC tissues and cells. Functional experiments showed that circFAT1 depletion reduced the level of chemoresistance-related genes. Moreover, circFAT1 knockdown remarkably facilitated apoptosis and decreased OX (half-maximal inhibitory concentration) IC50 value, migration, and invasion in OX-resistant BC cells. It was identified that miR-525-5p directly targeted circFAT1 and SKA1. Besides, rescue assays exhibited that circFAT1 promoted OX resistance in BC cells via the miR-525-5p/SKA1 regulatory network. Furthermore, GSEA and western blotting identified that SKA1 activated the Notch and Wnt pathway in OX-resistant BC cells. In conclusion, our results demonstrated that circFAT1 conferred OX resistance in BC by regulating the miR-525-5p/SKA1 via the Notch and Wnt pathway, providing a potential therapeutic target for patients with OX-resistant BC.


Subject(s)
Breast Neoplasms/genetics , Chromosomal Proteins, Non-Histone/metabolism , Drug Resistance, Neoplasm/genetics , MicroRNAs/metabolism , Oxaliplatin/pharmacology , RNA, Circular/metabolism , Receptors, Notch/metabolism , Wnt Signaling Pathway , Apoptosis/drug effects , Apoptosis/genetics , Base Sequence , Cell Line, Tumor , Drug Resistance, Neoplasm/drug effects , Female , Gene Knockdown Techniques , Humans , MicroRNAs/genetics , Middle Aged , Neoplasm Metastasis , RNA, Circular/genetics , Up-Regulation/genetics , Wnt Signaling Pathway/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...