Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Health Care Sci ; 2(2): 120-128, 2023 Apr.
Article in English | MEDLINE | ID: mdl-38938764

ABSTRACT

Automated labelling of radiology reports using natural language processing allows for the labelling of ground truth for large datasets of radiological studies that are required for training of computer vision models. This paper explains the necessary data preprocessing steps, reviews the main methods for automated labelling and compares their performance. There are four main methods of automated labelling, namely: (1) rules-based text-matching algorithms, (2) conventional machine learning models, (3) neural network models and (4) Bidirectional Encoder Representations from Transformers (BERT) models. Rules-based labellers perform a brute force search against manually curated keywords and are able to achieve high F1 scores. However, they require proper handling of negative words. Machine learning models require preprocessing that involves tokenization and vectorization of text into numerical vectors. Multilabel classification approaches are required in labelling radiology reports and conventional models can achieve good performance if they have large enough training sets. Deep learning models make use of connected neural networks, often a long short-term memory network, and are similarly able to achieve good performance if trained on a large data set. BERT is a transformer-based model that utilizes attention. Pretrained BERT models only require fine-tuning with small data sets. In particular, domain-specific BERT models can achieve superior performance compared with the other methods for automated labelling.

2.
J Digit Imaging ; 24(1): 86-95, 2011 Feb.
Article in English | MEDLINE | ID: mdl-19937083

ABSTRACT

Intracranial aneurysms represent a significant cause of morbidity and mortality. While the risk factors for aneurysm formation are known, the detection of aneurysms remains challenging. Magnetic resonance angiography (MRA) has recently emerged as a useful non-invasive method for aneurysm detection. However, even for experienced neuroradiologists, the sensitivity to small (<5 mm) aneurysms in MRA images is poor, on the order of 30~60% in recent, large series. We describe a fully automated computer-aided detection (CAD) scheme for detecting aneurysms on 3D time-of-flight (TOF) MRA images. The scheme locates points of interest (POIs) on individual MRA datasets by combining two complementary techniques. The first technique segments the intracranial arteries automatically and finds POIs from the segmented vessels. The second technique identifies POIs directly from the raw, unsegmented image dataset. This latter technique is useful in cases of incomplete segmentation. Following a series of feature calculations, a small fraction of POIs are retained as candidate aneurysms from the collected POIs according to predetermined rules. The CAD scheme was evaluated on 287 datasets containing 147 aneurysms that were verified with digital subtraction angiography, the accepted standard of reference for aneurysm detection. For two different operating points, the CAD scheme achieved a sensitivity of 80% (71% for aneurysms less than 5 mm) with three mean false positives per case, and 95% (91% for aneurysms less than 5 mm) with nine mean false positives per case. In conclusion, the CAD scheme showed good accuracy and may have application in improving the sensitivity of aneurysm detection on MR images.


Subject(s)
Imaging, Three-Dimensional , Intracranial Aneurysm/diagnosis , Magnetic Resonance Angiography , Angiography, Digital Subtraction , Humans , Intracranial Aneurysm/diagnostic imaging , Sensitivity and Specificity
3.
J Digit Imaging ; 23(2): 119-32, 2010 Apr.
Article in English | MEDLINE | ID: mdl-19484309

ABSTRACT

Information in electronic medical records is often in an unstructured free-text format. This format presents challenges for expedient data retrieval and may fail to convey important findings. Natural language processing (NLP) is an emerging technique for rapid and efficient clinical data retrieval. While proven in disease detection, the utility of NLP in discerning disease progression from free-text reports is untested. We aimed to (1) assess whether unstructured radiology reports contained sufficient information for tumor status classification; (2) develop an NLP-based data extraction tool to determine tumor status from unstructured reports; and (3) compare NLP and human tumor status classification outcomes. Consecutive follow-up brain tumor magnetic resonance imaging reports (2000--2007) from a tertiary center were manually annotated using consensus guidelines on tumor status. Reports were randomized to NLP training (70%) or testing (30%) groups. The NLP tool utilized a support vector machines model with statistical and rule-based outcomes. Most reports had sufficient information for tumor status classification, although 0.8% did not describe status despite reference to prior examinations. Tumor size was unreported in 68.7% of documents, while 50.3% lacked data on change magnitude when there was detectable progression or regression. Using retrospective human classification as the gold standard, NLP achieved 80.6% sensitivity and 91.6% specificity for tumor status determination (mean positive predictive value, 82.4%; negative predictive value, 92.0%). In conclusion, most reports contained sufficient information for tumor status determination, though variable features were used to describe status. NLP demonstrated good accuracy for tumor status classification and may have novel application for automated disease status classification from electronic databases.


Subject(s)
Electronic Data Processing/statistics & numerical data , Information Storage and Retrieval/methods , Magnetic Resonance Imaging/standards , Natural Language Processing , Neoplasms/diagnosis , Radiology Information Systems , Female , Humans , Magnetic Resonance Imaging/methods , Male , Medical Records Systems, Computerized , Reproducibility of Results , Sensitivity and Specificity
4.
Ann Acad Med Singap ; 35(8): 552-6, 2006 Aug.
Article in English | MEDLINE | ID: mdl-17006583

ABSTRACT

Teleradiology will have a significant impact on the delivery of healthcare and the practice of medicine. In order to ensure a positive outcome, the expected benefits, limitations and potential pitfalls of teleradiology must be carefully considered. For Singapore, teleradiology can be used to facilitate a quantum leap in the standards of radiological services. This can be achieved through the development of an integrated, nationwide, high-speed radiology network which will allow patients to have access to high-quality and responsive subspecialty radiology expertise located throughout the country. If judiciously implemented, teleradiology has the potential to propel Singapore radiology to an unprecedented level of professional quality and service delivery, and will provide the framework for sustainable radiological insourcing from other countries.


Subject(s)
Health Services Accessibility , International Cooperation , Outsourced Services , Teleradiology/trends , Communication , Economic Competition , Humans , Quality of Health Care , Singapore , Teleradiology/organization & administration
SELECTION OF CITATIONS
SEARCH DETAIL
...