Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Cell Signal ; 119: 111164, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38583745

ABSTRACT

The development of resistance to cisplatin (CDDP) in bladder cancer presents a notable obstacle, with indications pointing to the substantial role of circular RNAs (circRNAs) in this resistance. Nevertheless, the precise mechanisms through which circRNAs govern resistance are not yet fully understood. Our findings demonstrate that circUGGT2 is significantly upregulated in bladder cancer, facilitating cancer cell migration and invasion. Additionally, our analysis of eighty patient outcomes revealed a negative correlation between circUGGT2 expression levels and prognosis. Using circRNA pull-down assays, mass spectrometry analyses, and RNA Immunoprecipitation (RIP), it was shown that circUGGT2 interacts with the KU heterodimer, consisting of KU70 and KU80. Both KU70 and KU80 are critical components of the non-homologous end joining (NHEJ) pathway, which plays a role in CDDP resistance. Flow cytometry was utilized in this study to illustrate the impact of circUGGT2 on the sensitivity of bladder cancer cell lines to CDDP through its interaction with KU70 and KU80. Additionally, a reduction in the levels of DNA repair factors associated with the NHEJ pathway, such as KU70, KU80, DNA-PKcs, and XRCC4, was observed in chromatin of bladder cancer cells following circUGGT2 knockdown post-CDDP treatment, while the levels of DNA repair factors in total cellular proteins remained constant. Thus, the promotion of CDDP resistance by circUGGT2 is attributed to its facilitation of repair factor recruitment to DNA breaks via interaction with the KU heterodimer. Furthermore, our study demonstrated that knockdown of circUGGT2 resulted in reduced levels of γH2AX, a marker of DNA damage response, in CDDP-treated bladder cancer cells, implicating circUGGT2 in the NHEJ pathway for DNA repair.


Subject(s)
Cisplatin , DNA End-Joining Repair , Drug Resistance, Neoplasm , Ku Autoantigen , RNA, Circular , Urinary Bladder Neoplasms , Humans , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/drug therapy , Cisplatin/pharmacology , Cisplatin/therapeutic use , Drug Resistance, Neoplasm/genetics , RNA, Circular/metabolism , RNA, Circular/genetics , Cell Line, Tumor , Ku Autoantigen/metabolism , Ku Autoantigen/genetics , Gene Expression Regulation, Neoplastic/drug effects , Cell Movement/drug effects , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Disease Progression
2.
Cell Death Dis ; 15(2): 149, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38365764

ABSTRACT

Copper ions play a crucial role as cofactors for essential enzymes in cellular processes. However, when the intracellular concentration of copper ions exceeds the homeostatic threshold, they become toxic to cells. In our study, we demonstrated that elesclomol, as a carrier of copper ions, caused an upregulation of protein phosphatase 1 regulatory subunit 15 A (PPP1R15A), which plays a role in regulating substrate selectivity of protein phosphatase 1 during cuproptosis. Mechanistically, we investigated that PPP1R15A activated translation initiation by dephosphorylating eukaryotic translation initiation factor 2 subunit alpha at the S51 residue through protein phosphatase 1 and phosphorylating eukaryotic translation initiation factor 4E binding protein 1 at the T70 residue. In addition, PPP1R15A reduced H3K4 methylation by altering the phosphorylation of histone methyltransferases, which led to the silencing of MYC and G2M phase arrest.


Subject(s)
Copper , Neoplasms , Protein Phosphatase 1 , Humans , Copper/metabolism , Ions/metabolism , Neoplasms/genetics , Phosphoproteins/metabolism , Phosphorylation , Protein Biosynthesis , Protein Phosphatase 1/metabolism , Cell Cycle Checkpoints/genetics , Apoptosis/genetics , Peptide Chain Initiation, Translational/genetics
3.
Neoplasia ; 47: 100963, 2024 01.
Article in English | MEDLINE | ID: mdl-38176295

ABSTRACT

Muscle-invasive and metastatic bladder cancer indicates extra worse prognosis. Accumulating evidence roots for the prominent role of circular RNAs(circRNAs) in bladder cancer, while the mechanisms linking circRNAs and bladder cancer metastasis remain limitedly investigated. Here, we identified a significantly upregulated circRNA candidate, hsa_circ_0001583, from online datasets. Validated by qRT-PCR, PCR, sanger sequencing, actinomycin D and RNase R digestion experiments, hsa_circ_0001583 was proved to be a genuine circular RNA with higher expression levels in bladder cancer tissue. Through gain and loss of function experiments, hsa_circ_0001583 exhibited potent migration and invasion powers both in vitro and in vivo. The staphylococcal nuclease and Tudor domain containing 1 (SND1) was identified as an authentic binding partner for hsa_circ_0001583 through RNA pulldown and RIP experiments. Elevated levels of hsa_circ_0001583 could bind more to SND1 and protect the latter from degradation. Rescue experiments demonstrated that such interaction-induced increased in SND1 levels in bladder cancer cells enabled the protein to pump its endonuclease activity, leading to the degradation of tumor-suppressing MicroRNAs (miRNAs) including miR-126-3p, the suppressor of Disintegrin And Metalloproteinase Domain-Containing Protein 9 (ADAM9), ultimately driving cells into a highly migrative and invasive state. In summary, our study is the first to highlight the upregulation of hsa_circ_0001583 in bladder cancer and its role in downregulating miR-126-3p by binding to and stabilizing the SND1 protein, thereby promoting bladder cancer cell migration and invasion. This study adds hsa_circ_0001583 to the pool of bladder cancer metastasis biomarkers and therapeutic targets.


Subject(s)
MicroRNAs , Urinary Bladder Neoplasms , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Micrococcal Nuclease/genetics , Micrococcal Nuclease/metabolism , Tudor Domain , Biomarkers, Tumor/genetics , Urinary Bladder Neoplasms/genetics , Cell Proliferation , Cell Movement/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Membrane Proteins/genetics , ADAM Proteins/genetics , ADAM Proteins/metabolism , Endonucleases/genetics , Endonucleases/metabolism
4.
FASEB J ; 37(4): e22840, 2023 04.
Article in English | MEDLINE | ID: mdl-36943397

ABSTRACT

Erdafitinib is a novel fibroblast growth factor receptor (FGFR) inhibitor that has shown great therapeutic promise for solid tumor patients with FGFR3 alterations, especially in urothelial carcinoma. However, the mechanisms of resistance to FGFR inhibitors remain poorly understood. In this study, we found Erdafitinib could kill cells by inducing incomplete autophagy and increasing intracellular reactive oxygen species levels. We have established an Erdafitinib-resistant cell line, RT-112-RS. whole transcriptome RNA sequencing (RNA-Seq) and Cytospace analysis performed on Erdafitinib-resistant RT-112-RS cells and parental RT-112 cells introduced P4HA2 as a linchpin to Erdafitinib resistance. The gain and loss of function study provided evidence for P4HA2 conferring such resistance in RT-112 cells. Furthermore, P4HA2 could stabilize the HIF-1α protein which then activated downstream target genes to reduce reactive oxygen species levels in bladder cancer. In turn, HIF-1α could directly bind to P4HA2 promoter, indicating a positive loop between P4HA2 and HIF-1α in bladder cancer. These results suggest a substantial role of P4HA2 in mediating acquired resistance to Erdafitinib and provide a potential target for bladder cancer treatment.


Subject(s)
Carcinoma, Transitional Cell , Urinary Bladder Neoplasms , Humans , Carcinoma, Transitional Cell/drug therapy , Carcinoma, Transitional Cell/genetics , Carcinoma, Transitional Cell/pathology , Cell Line, Tumor , Pyrazoles/pharmacology , Reactive Oxygen Species , Receptor, Fibroblast Growth Factor, Type 3/genetics , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology
5.
Cell Death Dis ; 14(1): 74, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36720852

ABSTRACT

Recent research has shown that ferroptosis, the iron-dependent accumulation of lipid peroxides that leads to cell death, suppresses cancer metastasis. However, the role of ferroptosis in prostate cancer metastasis has not been completely elucidated. In the current study, we identified the essential role of serum/glucocorticoid regulated kinase 2 (SGK2) in promoting prostate cancer metastasis by inhibiting ferroptosis. We found that the expression of SGK2 was higher in metastatic prostate cancer and predicted poor clinical outcomes. SGK2 knockdown inhibited the metastatic capacity of prostate cancer cells in vivo and in vitro, while SGK2 overexpression inhibited ferroptosis and facilitated prostate cancer metastasis by phosphorylating the Thr-24 and Ser-319 sites of forkhead box O1 (FOXO1). This process induced the translocation of FOXO1 from the nucleus to the cytoplasm, relieving the inhibitory effect of FOXO1 on glutathione peroxidase 4 (GPX4). These findings delineated a novel role of SGK2 in ferroptosis regulation of prostate cancer metastasis, identifying a new key pathway driving prostate cancer metastasis and potentially providing new treatment strategies for metastatic prostate cancer.


Subject(s)
Ferroptosis , Phospholipid Hydroperoxide Glutathione Peroxidase , Prostatic Neoplasms , Protein Serine-Threonine Kinases , Humans , Male , Ferroptosis/genetics , Prostate , Prostatic Neoplasms/genetics , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism
6.
J Exp Clin Cancer Res ; 41(1): 188, 2022 Jun 02.
Article in English | MEDLINE | ID: mdl-35655258

ABSTRACT

BACKGROUND: Circular RNAs (circRNAs) are essential participants in the development and progression of various malignant tumors. Previous studies have shown that cell migration-inducing protein (CEMIP) accelerates prostate cancer (PCa) anoikis resistance (AR) by activating autophagy. This study focused on the effect of circCEMIP on PCa metastasis. METHODS: This study gradually revealed the role of circ_0004585 in PCa anoikis resistance via quantitative real-time PCR (qRT-PCR) analysis, western blotting, pull-down assays, and dual fluorescence reporter assays. RESULTS: Functionally, circ_0004585 promoted PCa cells invasion and metastasis both in vitro and in vivo. Mechanistically, circ_0004585 directly interacted with miR-1248 to upregulate target gene expression. Furthermore, target prediction and dual-luciferase reporter assays identified transmembrane 9 superfamily member 4 (TM9SF4) as a potential miR-1248 target. Pathway analysis revealed that TM9SF4 activated autophagy to promote PCa cells anoikis resistance via mTOR phosphorylation. CONCLUSIONS: These results demonstrated that circ_0004585 played an oncogenic role during PCa invasion and metastasis by targeting the miR-1248/TM9SF4 axis while providing new insight into therapeutic strategy development for metastatic PCa.


Subject(s)
MicroRNAs , Prostatic Neoplasms , Anoikis/genetics , Autophagy/genetics , Humans , Male , Membrane Proteins , MicroRNAs/genetics , Prostate , Prostatic Neoplasms/genetics
7.
J Exp Clin Cancer Res ; 41(1): 194, 2022 Jun 03.
Article in English | MEDLINE | ID: mdl-35659274

ABSTRACT

BACKGROUND: Acquisition of the chemoresistance to docetaxel (DTX), a microtubule-targeting agent, has been a huge obstacle in treatment for metastatic castration-resistant prostate cancer (mCRPC). Recently, strategies targeting the mitosis error correction mechanism including chromosomal passenger complex (CPC) were reported to reverse the resistance to microtubule-targeting anticancer agents. Meanwhile, accumulating evidence indicated the important roles of circRNAs in DTX resistance of prostate cancer (PCa). However, whether circRNAs could regulate DTX chemosensitivity by affecting the mitosis error correction mechanism remains unclear. METHODS: Expression patterns of circ_0004087 and BUB1 were determined through mining the public circRNA datasets and performing western blot and qRT-PCR assays. Agarose gel electrophoresis, Sanger sequencing, and RNase R treatment were conducted to examine the circular characteristics of circ_0004087. CircRNA pull-down, mass spectrometry analysis, Co-IP, and dual-luciferase reporter assays were performed to uncover the interaction among circ_0004087, SND1, and MYB. The effects of circ_0004087 and BUB1 on docetaxel-based chemotherapy were explored by flow cytometry and in vivo drug studies upon xenografted tumor model. RESULTS: In the present study, we revealed the profound interaction between a novel circRNA, circ_0004087, and the mitosis error correction mechanism. Mechanistically, circ_0004087 binding with transcriptional coactivator SND1 could stimulate the transactivation of MYB and enhance the expression of downstream target BUB1. In turn, elevated BUB1 expression further recruited CPC to centromeres and guaranteed the error-free mitosis of PCa cells. Biologically, the overexpression of circ_0004087 conferred while the knockdown impaired DTX resistance in PCa cells. CONCLUSIONS: Our study uncovered the crucial role of circ_0004087/SND1/MYB/BUB1 axis in modulating the error mitosis correction mechanism and DTX chemoresistance, suggesting that circ_0004087 may serve as a valuable prognostic biomarker and a potential therapeutic target in DTX-resistant PCa patients.


Subject(s)
MicroRNAs , Prostatic Neoplasms , Docetaxel/pharmacology , Docetaxel/therapeutic use , Drug Resistance, Neoplasm/genetics , Endonucleases/genetics , Gene Expression Regulation, Neoplastic , Humans , Male , MicroRNAs/genetics , Mitosis , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , RNA, Circular/genetics
8.
J Transl Med ; 20(1): 202, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35538543

ABSTRACT

BACKGROUND: Prostatic cancer (PCa) is one of the most common malignant tumors in men worldwide. Emerging evidence indicates significance of hypoxia and immunity in PCa invasion and metastasis. This study aimed to develop a hypoxia- and immune-related gene risk signature and explore the molecular mechanisms to formulate a better prognostic tool for PCa patients. METHODS: The hypoxia and immune scores of all PCa patients in The Cancer Genome Atlas (TCGA) dataset were calculated via the maximally selected rank statistics method and the ESTIMATE algorithm. From common genes identified overlapping hypoxia- and immune-related differentially expressed genes (DE-HRGs and DE-IRGs), a hypoxia- and immune-related gene risk signature was developed utilizing univariate and multivariate Cox regression analyses, and validated in the Memorial Sloan Kettering Cancer Centre (MSKCC) database. The immune cell infiltration level of PCa samples were evaluated with ssGSEA algorithm. Differential expression of prognostic genes was evidenced by immunohistochemistry and western blot (WB) in paired PCa samples. Expression levels of these genes and their variations under regular and hypoxic conditions were examined in cell lines. The functional effects of the prognostic gene on PCa cells were examined by wound healing and transwell assays. RESULTS: A hypoxia- and immune-related gene risk signature constructed by ISG15 and ZFP36 displays significant predictive potency, with higher risk score representing worse survival. A nomogram based on independent prognostic factors including the risk score and Gleason score exhibited excellent clinical value in the survival prediction of PCa. Infiltration levels of eosinophils, neutrophils, Tcm, Tem, TFH, Th1 cells, and Th17 cells were significantly lower in the high-risk group. Conversely, aDC, pDC, T helper cells, and Tregs were significantly higher. Additionally, the two prognostic genes were closely correlated with the tumor-infiltrating immune cell subset in PCa progression. RT-qPCR and WB presented higher and lower expression of ISG15 and ZFP36 in PCa cells, respectively. They were correspondingly increased and decreased in PCa cells under hypoxic conditions. Wound healing and transwell assays showed that over-expression of ISG15 promoted the migration and invasion of PCa cells. CONCLUSION: Our study identified a novel hypoxia- and immune-related gene signature, contributing a new perspective to the treatment of PCa.


Subject(s)
Cytokines , Prostatic Neoplasms , Tristetraprolin , Ubiquitins , Biomarkers, Tumor/genetics , Biomarkers, Tumor/immunology , Computational Biology/methods , Cytokines/genetics , Cytokines/immunology , Gene Expression Profiling , Humans , Hypoxia/genetics , Male , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Tristetraprolin/genetics , Tristetraprolin/metabolism , Ubiquitins/genetics , Ubiquitins/metabolism
9.
Cancer Sci ; 113(6): 2056-2070, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35363929

ABSTRACT

Cells detached from the extracellular matrix (ECM) can trigger different modes of cell death, and the survival of ECM-detached cells is one of the prerequisites for the metastatic cascade. Ferroptosis, a form of iron-dependent programmed cell death, has recently been found to be involved in matrix-detached cancer cells. However, the molecular mechanisms by which ECM-detached cells escape ferroptosis are not fully understood. Here, we observed that cell migration-inducing protein (CEMIP) upregulation facilitates ferroptosis resistance during ECM detachment by promoting cystine uptake in prostate cancer (PCa) cells. Meanwhile, silencing CEMIP causes it to lose its ability to promote cystine uptake and inhibit ferroptosis. Mechanistically, the interaction of CEMIP with inositol 1,4,5-trisphosphate receptor type 3 (ITPR3) modulates calcium ion (Ca2+ ) leakage from the endoplasmic reticulum, activating calcium/calmodulin-dependent protein kinase II (CaMKII), which further facilitates nuclear factor erythroid 2-related factor 2 (NRF2) phosphorylation and nuclear localization, leading to elevated transcription of solute carrier family 7 member 11 (SLC7A11), a glutamate/cystine antiporter, in PCa cells. Our findings delineate a novel role of CEMIP in ferroptosis resistance during ECM detachment and provide new insights into therapeutic strategies for metastatic PCa.


Subject(s)
Ferroptosis , Prostatic Neoplasms , Calcium , Cell Movement , Cell Survival , Cystine , Extracellular Matrix , Humans , Male
10.
Cell Death Dis ; 13(1): 46, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013120

ABSTRACT

The survival of cancer cells after detaching from the extracellular matrix (ECM) is essential for the metastatic cascade. The programmed cell death after detachment is known as anoikis, acting as a metastasis barrier. However, the most aggressive cancer cells escape anoikis and other cell death patterns to initiate the metastatic cascade. This study revealed the role of cell migration-inducing protein (CEMIP) in autophagy modulation and anoikis resistance during ECM detachment. CEMIP amplification during ECM detachment resulted in protective autophagy induction via a mechanism dependent on the dissociation of the B-cell lymphoma-2 (Bcl-2)/Beclin1 complex. Additional investigation revealed that acting transcription factor 4 (ATF4) triggered CEMIP transcription and enhanced protein kinase C alpha (PKCα) membrane translocation, which regulated the serine70 phosphorylation of Bcl-2, while the subsequent dissociation of the Bcl-2/Beclin1 complex led to autophagy. Therefore, CEMIP antagonization attenuated metastasis formation in vivo. In conclusion, inhibiting CEMIP-mediated protective autophagy may provide a therapeutic strategy for metastatic prostate cancer (PCa). This study delineates a novel role of CEMIP in anoikis resistance and provides new insight into seeking therapeutic strategies for metastatic PCa.


Subject(s)
Activating Transcription Factor 4/metabolism , Anoikis , Autophagy , Hyaluronoglucosaminidase/metabolism , Prostatic Neoplasms/pathology , Protein Kinase C-alpha/metabolism , Aged , Animals , Beclin-1/metabolism , Cell Line, Tumor , Cell Membrane/metabolism , Cell Survival/genetics , Gene Expression Regulation, Neoplastic , Humans , Hyaluronoglucosaminidase/antagonists & inhibitors , Hyaluronoglucosaminidase/genetics , Male , Mice , Phosphorylation , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism
11.
Cell Death Dis ; 12(8): 787, 2021 08 12.
Article in English | MEDLINE | ID: mdl-34381019

ABSTRACT

Abiraterone, a novel androgen synthesis inhibitor, has been approved for castration-resistant prostate cancer (CRPC) treatment. However, most patients eventually acquire resistance to this agent, and the underlying mechanisms related to this resistance remain largely unelucidated. Lysine acetyltransferase 2 A (KAT2A) has been reported to enhance transcriptional activity for certain histone or non-histone proteins through the acetylation and post-translational modification of the androgen receptor (AR). Therefore, we hypothesised that KAT2A might play a critical role in the resistance of prostate tumours to hormonal treatment. In this study, we found that KAT2A expression was increased in abiraterone-resistant prostate cancer C4-2 cells (C4-2-AbiR). Consistently, elevated expression of KAT2A was observed in patients with prostate cancer exhibiting high-grade disease or biochemical recurrence following radical prostatectomy, as well as in those with poor clinical survival outcomes. Moreover, KAT2A knockdown partially re-sensitised C4-2-AbiR cells to abiraterone, whereas KAT2A overexpression promoted abiraterone resistance in parental C4-2 cells. Consistent with this finding, KAT2A knockdown rescued abiraterone sensitivity and inhibited the proliferation of C4-2-AbiR cells in a mouse model. Mechanistically, KAT2A directly acetylated the hinge region of the AR, and induced AR translocation from the cytoplasm to the nucleus, resulting in increased transcriptional activity of the AR-targeted gene prostate specific antigen (PSA) leading to resistance to the inhibitory effect of abiraterone on proliferation. Taken together, our findings demonstrate a substantial role for KAT2A in the regulation of post-translational modifications in AR affecting CRPC development, suggesting that targeting KAT2A might be a potential strategy for CRPC treatment.


Subject(s)
Androstenes/pharmacology , Cell Nucleus/metabolism , Drug Resistance, Neoplasm , Histone Acetyltransferases/metabolism , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/pathology , Receptors, Androgen/metabolism , Acetylation , Animals , Cell Line, Tumor , Cell Nucleus/drug effects , Cell Proliferation/drug effects , Drug Resistance, Neoplasm/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Gene Knockdown Techniques , Histone Acetyltransferases/genetics , Humans , Lysine/metabolism , Male , Mice, Nude , Prognosis , Prostate-Specific Antigen/metabolism , Protein Transport/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Up-Regulation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...