Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 34(41)2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37433285

ABSTRACT

We describes the development of a self-assembled nanoprobe for ratiometric sensing of hypoxia in living cells. The probe, UC-AuNPs, is composed of azo-functionalized upconversion nanoparticles (azo-UCNPs) and gold nanoparticles functionalized withß-cyclodextrin (CD-AuNPs). Under hypoxic conditions, reductases reduce azo derivatives on the UCNPs, leading to detachment of the CD-AuNPs and subsequent fluorescence recovery of the green emission. The ratiometric measurement incorporated into the strategy reduces the impact of external factors and improves sensitivity of the probe. The use of NIR excitation effectively minimizes interference from strong luminescence backgrounds in biosystems. The UC-AuNPs nanoprobe is able to effectively sense and monitor hypoxia conditions in living cells and has the potential to distinguish hypoxia-related diseases from healthy tissue, making it a valuable tool for early clinical diagnosis.


Subject(s)
Lanthanoid Series Elements , Metal Nanoparticles , Nanoparticles , Humans , Gold , Luminescence , Hypoxia
2.
Anal Chim Acta ; 1268: 341372, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37268339

ABSTRACT

Highly sensitive monitoring of cancer-related miRNAs is of great significance for tumor diagnosis. Herein, catalytic probes based on DNA-functionalized Au nanoclusters (AuNCs) were prepared in this work. The aggregation-induced emission-active Au nanoclusters showed an interesting phenomenon of aggregation induced emission (AIE) affected by the aggregation state. Leveraging this property, the AIE-active AuNCs were used to develop catalytic turn-on probes for detecting in vivo cancer-related miRNA based on a hybridization chain reaction (HCR). The target miRNA triggered the HCR and induced aggregation of AIE-active AuNCs, leading to a highly luminescent signal. The catalytic approach demonstrated a remarkable selectivity and a low detection limit in comparison to noncatalytic sensing signals. In addition, the excellent delivery the ability of MnO2 carrier made it possible to use the probes for intracellular imaging and in vivo imaging. Effective in situ visualization of miR-21 was achieved not only in living cells but also in tumors in living animals. This approach potentially offers a novel method for obtaining information for tumor diagnosis via highly sensitive cancer-related miRNA imaging in vivo.


Subject(s)
Metal Nanoparticles , MicroRNAs , Animals , Manganese Compounds , Gold , Oxides
SELECTION OF CITATIONS
SEARCH DETAIL
...