Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
J Agric Food Chem ; 68(11): 3518-3527, 2020 Mar 18.
Article in English | MEDLINE | ID: mdl-32091890

ABSTRACT

Novel nanosized biomass-based pH-responsive cellulose nanofibers (CNF-PEI) with excellent biocompatibility were tailored by grafting polyethylenimine (PEI) onto carboxylated cellulose nanofibers (CNF-COOH); the active site (-COOH, 0.96 mmol/g) was anchored on cellulose nanofibers (CNFs) to introduce PEI with a high density (10.57 mmol/g) of amino groups. The as-prepared CNF-PEI not only maintained the good properties of CNFs but also possessed excellent biocompatibility and pH-responsive properties, offering interesting possibilities for pH-induced sustained drug release and medical dressing. The CNF-PEI showed rapid wettability conversion from hydrophilic, underwater superoleophobic (WCA = 20.7°, OCA = 159.3°) to hydrophobic, superoleophilic (WCA = 129.6°, OCA = 29.7°) in response to pH change from acidic conditions to alkaline conditions. The antibacterial activity of CNF-PEI toward Escherichia coli and Listeria monocytogenes was 100% and 94.6% under acidic conditions, respectively. Furthermore, the pH-responsive mechanism of CNF-PEI was revealed by XPS, 13C NMR, 1H NMR, and AFM analyses.


Subject(s)
Nanofibers , Anti-Bacterial Agents/pharmacology , Cellulose , Drug Liberation , Hydrogen-Ion Concentration
2.
Carbohydr Polym ; 219: 95-104, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31151550

ABSTRACT

A novel biomass cellulose-based colorimetric sensor (DAC-PDH) was prepared by a Schiff base reaction between the aldehyde groups of dialdehyde cellulose (DAC) and the amino groups of 2,6-pyridine dihydrazide (PDH). The as-prepared sensor (DAC-PDH) showed selective recognition of Cu2+ and a visual colour change from white to green. The visual limit of detection for Cu2+ was 10-7 mol/L. Furthermore, DAC-PDH responded to Cu2+ within 30 s by the method of dynamic condition. The sensor possessed the properties of a high density of functional groups (CO, NH, NH2), a large external surface area, a short transit distance and flexibility; thus, Cu2+ can be rapidly absorbed and enriched on the DAC-PDH through multi-dentate ligand chelation between Cu2+ and the carbonyl groups (CO) and the amino groups (NH, NH2) of DAC-PDH. The as-prepared DAC-PDH colorimetric sensor exhibits promising prospects for in situ identification of Cu2+.

3.
Carbohydr Polym ; 203: 246-255, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30318210

ABSTRACT

Two novel pH-responsive reversible-wettability biomass cellulose-based materials of cellulose-g-PAA and cellulose-g-PAM were conveniently prepared by grafting acrylic acid (AA) and acrylamide (AM), respectively, onto eucalyptus pulp cellulose. The hydrophobic-oleophilic of cellulose-g-PAA and the oleophobic-hydrophilic of cellulose-g-PAM were converted to oleophobic-hydrophilic and hydrophobic-oleophilic, respectively, as the pH converted from 1 to 9. The pH-responsive mechanism of these cellulose-based materials was investigated by 13C nuclear magnetic resonance, X-ray photoelectron spectroscopy, and atomic force microscopy analyses. The resulting cellulose-g-PAA and cellulose-g-PAM papers were applied in the switchable separation of oil/water mixtures. Water passed through the cellulose-g-PAA paper at pH = 9 and cellulose-g-PAM paper at pH = 1, while oil was retained. After changing the pH value, oil permeated these papers, but water did not. The papers exhibited excellent regeneration performances; the oil adsorbed on the papers was completely desorbed via pH control.

4.
Polymers (Basel) ; 10(6)2018 May 28.
Article in English | MEDLINE | ID: mdl-30966626

ABSTRACT

A thermo-responsive cellulose-based material (cellulose-g-PNIPAAm) was prepared by grafting N-isopropylacrylamide (NIPAAm) onto bagasse pulp cellulose via Ce (IV)-initiated free radical polymerization. The surfaces of the obtained cellulose-g-PNIPAAm paper showed a rapid wettability conversion from being hydrophilic (water contact angles (WCA) of 0°) at 25 °C to becoming hydrophobic (WCA of 134.2°) at 45 °C. Furthermore, the thermo-responsive mechanism of cellulose-g-PNIPAAm was examined by the in situ variable-temperature 13C NMR, ¹H NMR and AFM analysis. At the same time, the resulting cellulose paper was applied for a switchable separation of oil/water mixtures. Water can pass through the paper under 45 °C, while oil is kept on the paper. When the temperature is above 45 °C, oil can permeate through the paper, while water cannot pass through the water. Moreover, the paper exhibited excellent regeneration performance after five cycles and maintained its switchable wettability.

SELECTION OF CITATIONS
SEARCH DETAIL
...