Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Artif Intell Med ; 151: 102846, 2024 May.
Article in English | MEDLINE | ID: mdl-38547777

ABSTRACT

BACKGROUND AND OBJECTIVES: Generating coherent reports from medical images is an important task for reducing doctors' workload. Unlike traditional image captioning tasks, the task of medical image report generation faces more challenges. Current models for generating reports from medical images often fail to characterize some abnormal findings, and some models generate reports with low quality. In this study, we propose a model to generate high-quality reports from medical images. METHODS: In this paper, we propose a model called Hybrid Discriminator Generative Adversarial Network (HDGAN), which combines Generative Adversarial Network (GAN) with Reinforcement Learning (RL). The HDGAN model consists of a generator, a one-sentence discriminator, and a one-word discriminator. Specifically, the RL reward signals are judged on the one-sentence discriminator and one-word discriminator separately. The one-sentence discriminator can better learn sentence-level structural information, while the one-word discriminator can learn word diversity information effectively. RESULTS: Our approach performs better on the IU-X-ray and COV-CTR datasets than the baseline models. For the ROUGE metric, our method outperforms the state-of-the-art model by 0.36 on the IU-X-ray, 0.06 on the MIMIC-CXR and 0.156 on the COV-CTR. CONCLUSIONS: The compositional framework we proposed can generate more accurate medical image reports at different levels.


Subject(s)
Deep Learning , Diagnostic Imaging , Image Processing, Computer-Assisted , Neural Networks, Computer , Datasets as Topic , Diagnostic Imaging/methods , Image Processing, Computer-Assisted/methods , Radiography, Thoracic , Thorax/diagnostic imaging , Humans
2.
J Ethnopharmacol ; 303: 115944, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36410574

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Fuzheng Xiaoai Decoction 1 (FZXAD1) is a clinical experience prescription for the treatment of cancer patients at an advanced stage. FZXAD1 has been used for more than 10 years in the clinic and can effectively improve the deficiency syndrome of cancer patients. However, its mechanisms need further clarification. AIM OF THE STUDY: To check the effects of FZXAD1 in colon 26 (C26) cancer cachexia mice and try to clarify the mechanisms of FZXAD1 in ameliorating cancer cachexia symptoms. MATERIALS AND METHODS: An animal model of cancer cachexia was constructed with male BALB/c mice bearing C26 tumor cells. Food intake, body weight and tumor size were measured daily during the animal experiment. Tissue samples in different groups including tumor and gastrocnemius muscle, were dissected and weighed at the end of the assay. Serum biochemical indicators such as total protein (TP), glucose (GLU) and alkaline phosphatase (ALP) were also detected. Network pharmacology-based analysis predicted the possible targets and signaling pathways involved in the effects of FZXAD1 on cancer cachexia therapy. Western blotting assays of the gastrocnemius muscle tissues from C26 tumor-bearing mice were then used to confirm the predicted possible targets of FZXAD1. RESULTS: The results of animal experiments showed that FZXAD1 could ameliorate cancer cachexia by alleviating the muscle wasting as well as kidney atrophy and increasing the body weight of cancer cachexia mice. AKT1, MTOR, MAPK3, HIF1A and MAPK1 were predicted as the core targets of FZXAD1. Western blotting confirmed the prediction that FZXAD1 increased the expression levels of phosphorylated Akt and mTOR in the muscle tissues. In addition, FZXAD1 treatment obviously ameliorated the increased levels of HIF-1α and phosphorylated Erk1/2 in C26 tumor-bearing mice. CONCLUSION: FZXAD1 effectively ameliorated cancer cachexia in an animal model of mice, which is consistent with its efficacy in the treatment of cancer patients. The mechanisms of FZXAD1 might be mainly based on its alleviating effects on muscle atrophy by activating the Akt-mTOR pathway and thus helping to maintain body weight.


Subject(s)
Cachexia , Colonic Neoplasms , Male , Animals , Mice , Cachexia/drug therapy , Cachexia/etiology , Cachexia/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Muscular Atrophy/pathology , Muscle, Skeletal , Colonic Neoplasms/pathology , TOR Serine-Threonine Kinases/metabolism , Body Weight
3.
Acta Pharmacol Sin ; 41(10): 1314-1327, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32203078

ABSTRACT

Gastrodin (GAS) is the main bioactive component of Tianma, a traditional Chinese medicine widely used to treat neurological disorders as well as cardio- and cerebrovascular diseases. In the present study, the protective effects of GAS on H9c2 cells against ischemia-reperfusion (IR)-like injury were found to be related to decreasing of oxidative stress. Furthermore, GAS could protect H9c2 cells against oxidative injury induced by H2O2. Pretreatment of GAS at 20, 50, and 100 µM for 4 h significantly ameliorated the decrease in cell viability and increase in apoptosis of H9c2 cells treated with 400 µM H2O2 for 3 h. Furthermore, we showed that H2O2 treatment induced fragmentation of mitochondria and significant reduction in networks, footprint, and tubular length of mitochondria; H2O2 treatment strongly inhibited mitochondrial respiration; H2O2 treatment induced a decrease in the expression of mitochondrial fusion factors Mfn2 and Opa1, and increase in the expression of mitochondrial fission factor Fis1. All these alterations in H2O2-treated H9c2 cells could be ameliorated by GAS pretreatment. Moreover, we revealed that GAS pretreatment enhanced the nuclear translocation of Nrf2 under H2O2 treatment. Knockdown of Nrf2 expression abolished the protective effects of GAS on H2O2-treated H9c2 cells. Our results suggest that GAS may protect H9c2 cardiomycytes against oxidative injury via increasing the nuclear translocation of Nrf2, regulating mitochondrial dynamics, and maintaining the structure and functions of mitochondria.


Subject(s)
Benzyl Alcohols , Cardiotonic Agents , Glucosides , Mitochondria , Mitochondrial Dynamics , Myocytes, Cardiac , Oxidative Stress , Animals , Rats , Apoptosis/drug effects , Benzyl Alcohols/pharmacology , Cardiotonic Agents/pharmacology , Cell Line , Gene Knockdown Techniques , Glucosides/pharmacology , Hydrogen Peroxide/pharmacology , Mitochondria/metabolism , Mitochondrial Dynamics/drug effects , Myocytes, Cardiac/drug effects , Oxidative Stress/drug effects , NF-E2-Related Factor 2
SELECTION OF CITATIONS
SEARCH DETAIL
...