Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Pediatr ; 11: 1132885, 2023.
Article in English | MEDLINE | ID: mdl-37303750

ABSTRACT

Objective: To explore the relationship between common air pollution and common birth defects, and to provide reference for the prevention of birth defects. Methods: We conducted a case-control study in Xiamen, a city in southeastern China from 2019 to 2020. Logistics regression was used to analyze the relationship between sulfur dioxide(SO2), fine particulate matter 2.5(PM2.5), nitrogen dioxide(NO2), ozone(O3), carbon monoxide(CO) and the occurrence of common birth defects such as congenital heart disease, facial cleft, and finger deformity. Results: SO2 significantly increased the risk of birth defects such as congenital heart disease, cleft lip and/or cleft palate, and ear deformity in the first and second months of pregnancy. Conclusion: Exposure to common air pollutants increases the risk of birth defects, and SO2 significantly affects the occurrence of birth defects in the first two months of pregnancy.

2.
Exp Ther Med ; 22(5): 1203, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34584548

ABSTRACT

Gastric cancer (GC) is a malignancy for which effective therapeutic drugs are limited. Podofilox exhibits antitumor effects in various types of cancer; however, whether it may inhibit GC growth remains unknown. The aim of the present study was to investigate the role of podofilox in GC. Cell Counting Kit-8, colony formation and cell cycle assays were used to detect the role of podofilox on cellular proliferation and the cell cycle, respectively. A microarray was used to detect the transcriptional changes induced by podofilox in GC cells. The results of the present study demonstrated that podofilox inhibited GC cell proliferation and colony formation. The half maximal inhibitory concentration of podofilox in AGS and HGC-27 cells was 2.327 and 1.981 nM, respectively. In addition, treatment with podofilox induced G0/G1 cell cycle arrest. Molecular analysis based on microarray data demonstrated that podofilox altered the expression levels of genes involved in the cell cycle, c-Myc and p53 signaling. Autophagy-related 10 (ATG10), which was highly expressed in GC tissues, was also downregulated by podofilox, as demonstrated by the results of the microarray analysis and immunoblotting. To determine the involvement of ATG10 in GC, ATG10 was knocked down in GC cells by small interfering RNA, which suppressed the proliferation and colony formation of GC cells compared with those observed in the control-transfected cells. Taken together, the results of the present study suggested that podofilox may inhibit GC cell proliferation by preventing the cell cycle progression and regulating the c-Myc/ATG10 signaling pathway.

3.
J Cell Mol Med ; 25(15): 7270-7279, 2021 08.
Article in English | MEDLINE | ID: mdl-34213077

ABSTRACT

Pulmonary tuberculosis (PTB) is a major global public health problem. The purpose of this study was to find biomarkers that can be used to diagnose tuberculosis. We used four NCBI GEO data sets to conduct analysis. Among the four data sets, GSE139825 is lung tissue microarray, and GSE83456, GSE19491 and GSE50834 are blood microarray. The differential genes of GSE139825 and GSE83456 were 68 and 226, and intersection genes were 11. Gene ontology (GO) analyses of 11 intersection genes revealed that the changes were mostly enriched in regulation of leucocyte cell-cell adhesion and regulation of T-cell activation. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of DEGs revealed that the host response in TB strongly involves cytokine-cytokine receptor interactions and folate biosynthesis. In order to further narrow the range of biomarkers, we used protein-protein interaction to establish a hub gene network of two data sets and a network of 11 candidate genes. Eventually, IRF1 was selected as a biomarker. As validation, IRF1 levels were shown to be up-regulated in patients with TB relative to healthy controls in data sets GSE19491 and GSE50834. Additionally, IRF1 levels were measured in the new patient samples using ELISA. IRF1 was seen to be significantly up-regulated in patients with TB compared with healthy controls with an AUC of 0.801. These results collectively indicate that IRF1 could serve as a new biomarker for the diagnosis of pulmonary tuberculosis.


Subject(s)
Interferon Regulatory Factor-1/genetics , Tuberculosis, Pulmonary/metabolism , Up-Regulation , Biomarkers/metabolism , Cytokines/metabolism , Gene Regulatory Networks , Humans , Interferon Regulatory Factor-1/metabolism , Protein Interaction Maps , Transcriptome , Tuberculosis, Pulmonary/genetics , Tuberculosis, Pulmonary/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...