Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 7(1): 10231, 2017 08 31.
Article in English | MEDLINE | ID: mdl-28860649

ABSTRACT

With the development of invisibility technology, invisibility devices have now become more practical, with properties such as working at visible wavelengths, using natural materials, and hiding macroscopic objects. Recently, the cloaking of dynamic objects was experimentally realized using ray-optics. Here, based on a phase retrieval algorithm and phase conjugation technology, we design and fabricate a system to hide dynamic objects that changes at speeds faster than 8 seconds per frame. Different from shell cloaks and carpet-like cloaks, which conceal the entire region covered by the cloak, our system works when the object is at a distance and hides only the selected part of an object when the entire object is within the working area of the system. We experimentally demonstrate the concealment of a millimeter-scale object at different wavelengths. We believe that our work may provide a new approach to hiding objects in real life and may also be applicable in biological imaging and atmospheric imaging.

2.
Sci Rep ; 5: 8375, 2015 Feb 11.
Article in English | MEDLINE | ID: mdl-25669436

ABSTRACT

The ability to noninvasive image through turbid media has long been a major scientific and technological goal in many disciplines. A breakthrough has been made to observe objects that were completely hidden behind an opaque scattering layer. However, such approach needs not only to scan both illumination light and detector but further off-line procedures to numerically retrieve the image of the objects. Here, we report a distant invisibility-based noninvasive method that can hide scattering layers and allows to directly image objects behind. By recording holograms of the objects through a ground glass and then using the holograms produced time-reversal lights to re-illuminate the objects, we implemented to observe objects with feature size ranging from 39 µm to 80 µm that were hidden behind a 3 mm thick ground glass. Of importance, our approach opens a door towards real-time, high speed biomedical imaging and in-site inspection of integrated devices.

3.
Sci Rep ; 5: 8581, 2015 Feb 26.
Article in English | MEDLINE | ID: mdl-25716451

ABSTRACT

Realization of a perfect invisibility cloak still challenges the current fabricating technologies. Most experiments, if not all, are hence focused on carpet cloaks because of their relatively low requirements to material properties. Nevertheless, present invisibility carpets are used to hide beneath objects. Here, we report a carpet-like device to directionally conceal objects and further to create illusions above it. The device is fabricated through recording a reflection hologram of objects and is used to produce a time-reversed signal to compensate for the information of the objects and further to create light field of another object so as to realize both functions of hiding the objects and creating illusions, respectively. The carpet-like device can work for macroscopic objects at visible wavelength as the distance between objects and device is at decimeter scale. Our carpet-like device to realizing invisibility and creating illusions may provide a robust way for crucial applications of magic camouflaging and anti-detection etc.

4.
Sci Rep ; 3: 1974, 2013.
Article in English | MEDLINE | ID: mdl-23756877

ABSTRACT

Invisibility devices have attracted considerable attentions in the last decade. In addition to invisibility cloaks, unidirectional invisibility systems such as carpet-like cloaks and parity-time symmetric structures are also inspiring some specific researching interests due to their relatively simplifying design. However, unidirectional invisibility systems worked generally in just one certain illumination direction. Here, based on time-reversal principle, we present the design and fabrication of a kind of all-dielectric device that could directionally cancel objects and create illusions as the illuminating light was from different directions. Our devices were experimentally realized through holographic technology and could work for macroscopic objects with any reasonable size at visible wavelengths, and hence may take directional invisibility technology a big step towards interesting applications ranging from magic camouflaging, directional detection to super-resolution biomedical imaging.

5.
Opt Express ; 19(23): 23240-8, 2011 Nov 07.
Article in English | MEDLINE | ID: mdl-22109202

ABSTRACT

We introduce and numerically demonstrate a kind of isotropic dielectric macroscopic cloaks for hiding objects and creating illusions at visible frequencies. The cloaks are designed by angular spectrum theory and their working principle is based upon time reversal and conjugation operation. We will demonstrate that the cloaks are capable of hiding both phase-only and lossy objects. The size of the object to be hidden and the distance between the object and the cloak can be in range of millimeter and meter scale, respectively. The results are demonstrated by computer generated holography. Our work may provide a new way for pushing invisibility cloaks a big step toward more realistic fields.

SELECTION OF CITATIONS
SEARCH DETAIL
...