Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Environ Health Rep ; 1(1): 1-10, 2014 Mar 01.
Article in English | MEDLINE | ID: mdl-24860723

ABSTRACT

Beyond the genome, epigenetics has become a promising approach in understanding the interactions between the gene and the environment. Epigenetic regulation includes DNA methylation, histone modifications, and non-coding RNAs. Among these, DNA methylation, which is the addition of a methyl group to the fifth base of cytosine to produce 5-methylcytosine (5-mC), is most commonly studied. Epigenetic regulation has changed given the discovery of 5-hydroxymethylcytosine (5-hmC), considered the "sixth base", and the nature of TET proteins to catalyze 5-mC oxidation to 5-hmC. 5-hydroxymethylation has been proposed to be a stable intermediate between methylation and demethylation and has raised questions about the functions of 5-hmC in gene regulation in cells, tissues, and organs in response to environmental exposure. Herein, we have provided an introduction to the chemistry of 5-hydroxymethylation, and the techniques for detection of 5-hydroxymethylation. In addition, we have reviewed current reports describing how 5-hmC responds to environmental factors, leading to the development of disease. And finally, we have discussed the potential use of 5-hmC in the study of disease development. All in all, it is our goal to provide innovative and convincing epigenetic studies for understanding the etiology of environmentally-related human disease, and translate these epigenetic findings into lifestyle recommendations and clinical practices to prevent and cure disease.

2.
Oncogene ; 30(22): 2504-13, 2011 Jun 02.
Article in English | MEDLINE | ID: mdl-21297667

ABSTRACT

The SET oncoprotein participates in cancer progression by affecting multiple cellular processes, inhibiting the tumor suppressor protein phosphatase 2A (PP2A), and inhibiting the metastasis suppressor nm23-H1. On the basis of these multiple activities, we hypothesized that targeted inhibition of SET would have multiple discrete and measurable effects on cancer cells. Here, the effects of inhibiting SET oncoprotein function on intracellular signaling and proliferation of human cancer cell lines was investigated. We observed the effects of COG112, a novel SET interacting peptide, on PP2A activity, Akt signaling, nm23-H1 activity and cellular migration/invasion in human U87 glioblastoma and MDA-MB-231 breast adenocarcinoma cancer cell lines. We found that COG112 interacted with SET protein and inhibited the association between SET and PP2A catalytic subunit (PP2A-c) and nm23-H1. The interaction between COG112 and SET caused PP2A phosphatase and nm23-H1 exonuclease activities to increase. COG112-mediated increases in PP2A activity resulted in the inhibition of Akt signaling and cellular proliferation. Additionally, COG112 inhibited SET association with Ras-related C(3) botulinum toxin substrate 1 (Rac1), leading to decreased cellular migration and invasion. COG112 treatment releases the SET-mediated inhibition of the tumor suppressor PP2A, as well as the metastasis suppressor nm23-H1. These results establish SET as a novel molecular target and that the inhibition of SET may have beneficial effects in cancer chemotherapy.


Subject(s)
Antineoplastic Agents/therapeutic use , Histone Chaperones/antagonists & inhibitors , Neoplasms/drug therapy , Peptides/therapeutic use , Transcription Factors/antagonists & inhibitors , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , DNA-Binding Proteins , Humans , NM23 Nucleoside Diphosphate Kinases/metabolism , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Signal Transduction/drug effects , rac1 GTP-Binding Protein/metabolism
3.
Oncogene ; 28(43): 3837-46, 2009 Oct 29.
Article in English | MEDLINE | ID: mdl-19701246

ABSTRACT

The chemopreventative effects of dithiolethione compounds are attributed to their activation of antioxidant response elements (AREs) by reacting with the Nrf2/Keap1 protein complex. In this study, we show antiproliferative effects of the dithiolethione compound ACS-1 in human cancer cell lines (A549 and MDA-MB-231) by increasing the activity of the tumor suppressor protein phoshatase 2A (PP2A). ACS-1 inhibited epidermal growth factor (EGF)-induced cellular proliferation in a concentration- and time-dependent manner. Akt activation, as determined by serine-473 phosphorylation, was inhibited by ACS-1 in cells stimulated with either EGF or fibronectin. Furthermore, ACS-1 inhibited mammalian target of rapamycin signaling and decreased c-myc protein levels. ACS-1 did not proximally alter EGF receptor or integrin signaling, but caused a concentration-dependent increase in PP2A activity. The effect of ACS-1 on Akt activation was not observed in the presence of the PP2A inhibitor okadaic acid. ACS-1 effects on PP2A activity were independent of ARE activation and cAMP formation. In addition to ACS-1, other dithiolethione compounds showed similar effects in reducing Akt activation, suggesting that this class of compounds may have other effects beyond chemoprevention.


Subject(s)
Anticarcinogenic Agents/pharmacology , Breast Neoplasms/drug therapy , Lung Neoplasms/drug therapy , Protein Phosphatase 2/metabolism , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Signal Transduction/drug effects , Breast Neoplasms/pathology , Cell Line, Tumor , Female , Humans , Lung Neoplasms/pathology , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism
4.
J Mol Endocrinol ; 32(1): 257-78, 2004 Feb.
Article in English | MEDLINE | ID: mdl-14766007

ABSTRACT

Microarray technology was evaluated for usefulness in assessing relationships between serum corticosterone and hepatic gene expression. Nine pairs of female Swiss mice were chosen to provide a wide range of serum corticosterone ratios; cDNA microarray analysis (approximately 8000 genes) was performed on their livers. A statistical method based on calculation of 99% confidence intervals discovered 32 genes which varied significantly among the livers. Five of these ratios correlated significantly with serum corticosterone ratio, including tyrosine aminotransferase, stress-induced protein, pleiotropic regulator 1 and insulin-like growth factor-binding protein-1; the latter has a potential role in cancer development. Secondly, linear regression of gene expression vs corticosterone ratios was screened for those with r> or =0.8 (P<0.01), yielding 141 genes, including some known to be corticosterone regulated and others of interest as possible glucocorticoid targets. Half of these significant correlations involved data sets where no microarray ratio exceeded +/- 1.5. These results showed that microarray may be used to survey tissues for changes in gene expression related to serum hormones, and that even small changes in expression can be of statistical significance in a study with adequate numbers of replicate samples.


Subject(s)
Corticosterone/blood , Gene Expression Regulation, Neoplastic/genetics , Insulin-Like Growth Factor Binding Protein 1/metabolism , Liver/metabolism , Animals , Apoptosis Regulatory Proteins , Carrier Proteins/genetics , Carrier Proteins/metabolism , Female , Gene Expression Profiling/methods , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Insulin-Like Growth Factor Binding Protein 1/genetics , Mice , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Oligonucleotide Array Sequence Analysis/methods , Tyrosine Transaminase/genetics , Tyrosine Transaminase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...