Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
PLoS One ; 19(5): e0301776, 2024.
Article in English | MEDLINE | ID: mdl-38722906

ABSTRACT

An accurate assessment of species diversity is a cornerstone of biology and conservation. The lynx spiders (Araneae: Oxyopidae) represent one of the most diverse and widespread cursorial spider groups, however their species richness in Asia is highly underestimated. In this study, we revised species diversity with extensive taxon sampling in Taiwan and explored species boundaries based on morphological traits and genetic data using a two-step approach of molecular species delimitation. Firstly, we employed a single COI dataset and applied two genetic distance-based methods: ABGD and ASAP, and two topology-based methods: GMYC and bPTP. Secondly, we further analyzed the lineages that were not consistently delimited, and incorporated H3 to the dataset for a coalescent-based analysis using BPP. A total of eight morphological species were recognized, including five new species, Hamataliwa cordivulva sp. nov., Hamat. leporauris sp. nov., Tapponia auriola sp. nov., T. parva sp. nov. and T. rarobulbus sp. nov., and three newly recorded species, Hamadruas hieroglyphica (Thorell, 1887), Hamat. foveata Tang & Li, 2012 and Peucetia latikae Tikader, 1970. All eight morphological species exhibited reciprocally monophyletic lineages. The results of molecular-based delimitation analyses suggested a variety of species hypotheses that did not fully correspond to the eight morphological species. We found that Hamat. cordivulva sp. nov. and Hamat. foveata showed shallow genetic differentiation in the COI, but they were unequivocally distinguishable according to their genitalia. In contrast, T. parva sp. nov. represented a deep divergent lineage, while differences of genitalia were not detected. This study highlights the need to comprehensively employ multiple evidence and methods to delineate species boundaries and the values of diagnostic morphological characters for taxonomic studies in lynx spiders.


Subject(s)
Phylogeny , Spiders , Animals , Spiders/classification , Spiders/genetics , Spiders/anatomy & histology , Taiwan , Male , Female , Species Specificity
2.
Syst Biol ; 72(4): 964-971, 2023 08 07.
Article in English | MEDLINE | ID: mdl-37161751

ABSTRACT

Higher-level classifications often must account for monotypic taxa representing depauperate evolutionary lineages and lacking synapomorphies of their better-known, well-defined sister clades. In a ranked (Linnean) or unranked (phylogenetic) classification system, discovering such a depauperate taxon does not necessarily invalidate the rank classification of sister clades. Named higher taxa must be monophyletic to be phylogenetically valid. Ranked taxa above the species level should also maximize information content, diagnosability, and utility (e.g., in biodiversity conservation). In spider classification, families are the highest rank that is systematically catalogued, and incertae sedis is not allowed. Consequently, it is important that family-level taxa be well defined and informative. We revisit the classification problem of Orbipurae, an unranked suprafamilial clade containing the spider families Nephilidae, Phonognathidae, and Araneidae sensu stricto. We argue that, to maximize diagnosability, information content, conservation utility, and practical taxonomic considerations, this "splitting" scheme is superior to its recently proposed alternative, which lumps these families together as Araneidae sensu lato. We propose to redefine Araneidae and recognize a monogeneric spider family, Paraplectanoididae fam. nov. to accommodate the depauperate lineage Paraplectanoides. We present new subgenomic data to stabilize Orbipurae topology which also supports our proposed family-level classification. Our example from spiders demonstrates why classifications must be able to accommodate depauperate evolutionary lineages, for example, Paraplectanoides. Finally, although clade age should not be a criterion to determine rank, other things being equal, comparable ages of similarly ranked taxa do benefit comparative biology. [Classification, family rank, phylogenomics, systematics, monophyly, spider phylogeny.].


Subject(s)
Biological Evolution , Spiders , Animals , Phylogeny , Spiders/genetics
4.
Zootaxa ; 5353(1): 47-59, 2023 Oct 06.
Article in English | MEDLINE | ID: mdl-38221424

ABSTRACT

Hogna Simon, 1885 is one of the most diverse genera of wolf spiders, with species that are almost exclusively ground-dwellers. A recent discovery of a tree-hole-living species in Taiwan was therefore surprising. Here, we describe Hogna arborea sp. nov. using a combination of morphological and molecular taxonomic evidence. We also discuss the arboreal lifestyle of this new species and emphasize the need for more detailed ecological research to assess its conservation status.


Subject(s)
Animals, Poisonous , Spiders , Animals , Trees , Taiwan
5.
Curr Biol ; 32(16): R871-R873, 2022 08 22.
Article in English | MEDLINE | ID: mdl-35998593

ABSTRACT

In the internet era, the digital architecture that keeps us connected and informed may also amplify the spread of misinformation. This problem is gaining global attention, as evidence accumulates that misinformation may interfere with democratic processes and undermine collective responses to environmental and health crises1,2. In an increasingly polluted information ecosystem, understanding the factors underlying the generation and spread of misinformation is becoming a pressing scientific and societal challenge3. Here, we studied the global spread of (mis-)information on spiders using a high-resolution global database of online newspaper articles on spider-human interactions, covering stories of spider-human encounters and biting events published from 2010-20204. We found that 47% of articles contained errors and 43% were sensationalist. Moreover, we show that the flow of spider-related news occurs within a highly interconnected global network and provide evidence that sensationalism is a key factor underlying the spread of misinformation.


Subject(s)
Social Media , Spiders , Animals , Communication , Ecosystem , Humans , Spiders/physiology
6.
Sci Data ; 9(1): 109, 2022 03 28.
Article in English | MEDLINE | ID: mdl-35347145

ABSTRACT

Mass media plays an important role in the construction and circulation of risk perception associated with animals. Widely feared groups such as spiders frequently end up in the spotlight of traditional and social media. We compiled an expert-curated global database on the online newspaper coverage of human-spider encounters over the past ten years (2010-2020). This database includes information about the location of each human-spider encounter reported in the news article and a quantitative characterisation of the content-location, presence of photographs of spiders and bites, number and type of errors, consultation of experts, and a subjective assessment of sensationalism. In total, we collected 5348 unique news articles from 81 countries in 40 languages. The database refers to 211 identified and unidentified spider species and 2644 unique human-spider encounters (1121 bites and 147 as deadly bites). To facilitate data reuse, we explain the main caveats that need to be made when analysing this database and discuss research ideas and questions that can be explored with it.


Subject(s)
Spider Bites , Spider Venoms , Spiders , Animals , Databases, Factual , Humans , Language , Newspapers as Topic
7.
Zootaxa ; 4927(1): zootaxa.4927.1.4, 2021 Feb 11.
Article in English | MEDLINE | ID: mdl-33756720

ABSTRACT

This study revised the spider genus Oxyopes Latreille, 1804 in Taiwan and delineated the species boundaries based on morphological and molecular characters. A total of seven Oxyopes spiders were recognized, including two newly described species, O. hasta sp. nov. and O. taiwanensis sp. nov. Oxyopes fujianicus Song Zhu 1993 from Yilan County, Nantou County, and Kaohsuing City, and O. striagatus Song 1999 from New Taipei City, Taichung City, Nantou County, and Kaohsiung City were recorded for the first time in Taiwan. An identification key and a distributional map of Taiwanese Oxyopes species were provided. Partial COI sequences were obtained for molecular phylogenetic and species delimitation analyses. Maximum likelihood and Bayesian phylogenies, and DNA barcoding gap analysis supported morphologically defined species. However, molecular species delimitation based on Automatic Barcode Gap Discovery (ABGD), PID (Liberal), and generalized mixed Yule coalescent (GMYC) were incongruent in species assignment. The results showed that the interspecific genetic divergence between O. sertatus and O. taiwanensis was relatively low (1.28 ± 0.43%), and the intraspecific genetic divergence of O. striagatus was relatively high (1.69 ± 0.35%). Ecological data, additional samples and genetic loci are required to further examine the level of reproductive isolation and patterns of population genetic structure in Taiwanese Oxyopes.


Subject(s)
DNA Barcoding, Taxonomic , Spiders , Animals , Bayes Theorem , Phylogeny , Spiders/genetics , Taiwan
8.
Syst Biol ; 68(4): 555-572, 2019 07 01.
Article in English | MEDLINE | ID: mdl-30517732

ABSTRACT

Instances of sexual size dimorphism (SSD) provide the context for rigorous tests of biological rules of size evolution, such as Cope's rule (phyletic size increase), Rensch's rule (allometric patterns of male and female size), as well as male and female body size optima. In certain spider groups, such as the golden orbweavers (Nephilidae), extreme female-biased SSD (eSSD, female:male body length $\ge$2) is the norm. Nephilid genera construct webs of exaggerated proportions, which can be aerial, arboricolous, or intermediate (hybrid). First, we established the backbone phylogeny of Nephilidae using 367 anchored hybrid enrichment markers, then combined these data with classical markers for a reference species-level phylogeny. Second, we used the phylogeny to test Cope and Rensch's rules, sex specific size optima, and the coevolution of web size, type, and features with female and male body size and their ratio, SSD. Male, but not female, size increases significantly over time, and refutes Cope's rule. Allometric analyses reject the converse, Rensch's rule. Male and female body sizes are uncorrelated. Female size evolution is random, but males evolve toward an optimum size (3.2-4.9 mm). Overall, female body size correlates positively with absolute web size. However, intermediate sized females build the largest webs (of the hybrid type), giant female Nephila and Trichonephila build smaller webs (of the aerial type), and the smallest females build the smallest webs (of the arboricolous type). We propose taxonomic changes based on the criteria of clade age, monophyly and exclusivity, classification information content, and diagnosability. Spider families, as currently defined, tend to be between 37 million years old and 98 million years old, and Nephilidae is estimated at 133 Ma (97-146), thus deserving family status. We, therefore, resurrect the family Nephilidae Simon 1894 that contains Clitaetra Simon 1889, the Cretaceous GeratonephilaPoinar and Buckley (2012), Herennia Thorell 1877, IndoetraKuntner 2006, new rank, Nephila Leach 1815, Nephilengys L. Koch 1872, Nephilingis Kuntner 2013, Palaeonephila Wunderlich 2004 from Tertiary Baltic amber, and TrichonephilaDahl 1911, new rank. We propose the new clade Orbipurae to contain Araneidae Clerck 1757, Phonognathidae Simon 1894, new rank, and Nephilidae. Nephilid female gigantism is a phylogenetically ancient phenotype (over 100 Ma), as is eSSD, though their magnitudes vary by lineage.


Subject(s)
Body Size/genetics , Phylogeny , Sex Characteristics , Spiders/classification , Animals , Female , Male , Spiders/anatomy & histology , Spiders/genetics
9.
J Exp Biol ; 220(Pt 12): 2260-2264, 2017 06 15.
Article in English | MEDLINE | ID: mdl-28396355

ABSTRACT

While molting occurs in the development of many animals, especially arthropods, post-maturity molting (PMM, organisms continue to molt after sexual maturity) has received little attention. The mechanism of molting has been studied intensively; however, the mechanism of PMM remains unknown although it is suggested to be crucial for the development of body size. In this study, we investigated factors that potentially induce PMM in the golden orb-web spider Nephila pilipes, which has the greatest degree of sexual dimorphism among terrestrial animals. We manipulated the mating history and the nutrient consumption of the females to examine whether they affect PMM. The results showed that female spiders under low nutrition were more likely to molt as adults, and mating had no significant influence on the occurrence of PMM. Moreover, spiders that underwent PMM lived longer than those that did not and their body sizes were significantly increased. Therefore, we concluded that nutritional condition rather than mating history affect PMM.


Subject(s)
Animal Nutritional Physiological Phenomena , Diet , Molting , Spiders/physiology , Animals , Female , Sexual Behavior, Animal , Sexual Maturation , Spiders/growth & development , Taiwan
10.
BMC Evol Biol ; 16(1): 242, 2016 11 09.
Article in English | MEDLINE | ID: mdl-27829358

ABSTRACT

BACKGROUND: Genital diversity may arise through sexual conflict over polyandry, where male genital features function to manipulate female mating frequency against her interest. Correlated genital evolution across animal groups is consistent with this view, but a link between genital complexity and mating rates remains to be established. In sexually size dimorphic spiders, golden orbweaving spiders (Nephilidae) males mutilate their genitals to form genital plugs, but these plugs do not always prevent female polyandry. In a comparative framework, we test whether male and female genital complexity coevolve, and how these morphologies, as well as sexual cannibalism, relate to the evolution of mating systems. RESULTS: Using a combination of comparative tests, we show that male genital complexity negatively correlates with female mating rates, and that levels of sexual cannibalism negatively correlate with male mating rates. We also confirm a positive correlation between male and female genital complexity. The macroevolutionary trajectory is consistent with a repeated evolution from polyandry to monandry coinciding with the evolution towards more complex male genitals. CONCLUSIONS: These results are consistent with the predictions from sexual conflict theory, although sexual conflict may not be the only mechanism responsible for the evolution of genital complexity and mating systems. Nevertheless, our comparative evidence suggests that in golden orbweavers, male genital complexity limits female mating rates, and sexual cannibalism by females coincides with monogyny.


Subject(s)
Biological Evolution , Body Size , Genitalia, Male/physiology , Sex Characteristics , Sexual Behavior, Animal/physiology , Spiders/physiology , Animals , Female , Male , Phenotype , Phylogeny
11.
Zookeys ; (625): 25-44, 2016.
Article in English | MEDLINE | ID: mdl-27833425

ABSTRACT

The Caribbean islands harbor rich biodiversity with high levels of single island endemism. Stretches of ocean between islands represent significant barriers to gene-flow. Yet some native species are widespread, indicating dispersal across oceans, even in wingless organisms like spiders. Argiope argentata (Fabricius, 1775) is a large, charismatic, and widespread species of orb-weaving spider ranging from the United States to Argentina and is well known to balloon. Here we explore the phylogeography of Argiope argentata in the Caribbean as a part of the multi-lineage CarBio project, through mtDNA haplotype and multi-locus phylogenetic analyses. The history of the Argiope argentata lineage in the Caribbean goes back 3-5 million years and is characterized by multiple dispersal events and isolation-by-distance. We find a highly genetically distinct lineage on Cuba which we describe as Argiope butchkosp. n. While the argentata lineage seems to readily balloon shorter distances, stretches of ocean still act as filters for among-island gene-flow as evidenced by distinct haplotypes on the more isolated islands, high FST values, and strong correlation between intraspecific (but not interspecific) genetic and geographic distances. The new species described here is clearly genetically diagnosable, but morphologically cryptic, at least with reference to the genitalia that typically diagnose spider species. Our results are consistent with the intermediate dispersal model suggesting that good dispersers, such as our study species, limit the effect of oceanic barriers and thus diversification and endemism.

12.
PeerJ ; 4: e2201, 2016.
Article in English | MEDLINE | ID: mdl-27547527

ABSTRACT

The use of unique DNA sequences as a method for taxonomic identification is no longer fundamentally controversial, even though debate continues on the best markers, methods, and technology to use. Although both existing databanks such as GenBank and BOLD, as well as reference taxonomies, are imperfect, in best case scenarios "barcodes" (whether single or multiple, organelle or nuclear, loci) clearly are an increasingly fast and inexpensive method of identification, especially as compared to manual identification of unknowns by increasingly rare expert taxonomists. Because most species on Earth are undescribed, a complete reference database at the species level is impractical in the near term. The question therefore arises whether unidentified species can, using DNA barcodes, be accurately assigned to more inclusive groups such as genera and families-taxonomic ranks of putatively monophyletic groups for which the global inventory is more complete and stable. We used a carefully chosen test library of CO1 sequences from 49 families, 313 genera, and 816 species of spiders to assess the accuracy of genus and family-level assignment. We used BLAST queries of each sequence against the entire library and got the top ten hits. The percent sequence identity was reported from these hits (PIdent, range 75-100%). Accurate assignment of higher taxa (PIdent above which errors totaled less than 5%) occurred for genera at PIdent values >95 and families at PIdent values ≥ 91, suggesting these as heuristic thresholds for accurate generic and familial identifications in spiders. Accuracy of identification increases with numbers of species/genus and genera/family in the library; above five genera per family and fifteen species per genus all higher taxon assignments were correct. We propose that using percent sequence identity between conventional barcode sequences may be a feasible and reasonably accurate method to identify animals to family/genus. However, the quality of the underlying database impacts accuracy of results; many outliers in our dataset could be attributed to taxonomic and/or sequencing errors in BOLD and GenBank. It seems that an accurate and complete reference library of families and genera of life could provide accurate higher level taxonomic identifications cheaply and accessibly, within years rather than decades.

13.
BMC Evol Biol ; 16(1): 161, 2016 Aug 17.
Article in English | MEDLINE | ID: mdl-27535025

ABSTRACT

BACKGROUND: In most animal groups, it is unclear how body size variation relates to genital size differences between the sexes. While most morphological features tend to scale with total somatic size, this does not necessarily hold for genitalia because divergent evolution in somatic size between the sexes would cause genital size mismatches. Theory predicts that the interplay of female-biased sexual size dimorphism (SSD) and sexual genital size dimorphism (SGD) should adhere to the 'positive genital divergence', the 'constant genital divergence', or the 'negative genital divergence' model, but these models remain largely untested. We test their validity in the spider family Nephilidae known for the highest degrees of SSD among terrestrial animals. RESULTS: Through comparative analyses of sex-specific somatic and genital sizes, we first demonstrate that 99 of the 351 pairs of traits are phylogenetically correlated. Through factor analyses we then group these traits for MCMCglmm analyses that test broader correlation patterns, and these reveal significant correlations in 10 out of the 36 pairwise comparisons. Both types of analyses agree that female somatic and internal genital sizes evolve independently. While sizes of non-intromittent male genital parts coevolve with male body size, the size of the intromittent male genital parts is independent of the male somatic size. Instead, male intromittent genital size coevolves with female (external and, in part, internal) genital size. All analyses also agree that SGD and SSD evolve independently. CONCLUSIONS: Internal dimensions of female genitalia evolve independently of female body size in nephilid spiders, and similarly, male intromittent genital size evolves independently of the male body size. The size of the male intromittent organ (the embolus) and the sizes of female internal and external genital components thus seem to respond to selection against genital size mismatches. In accord with these interpretations, we reject the validity of the existing theoretical models of genital and somatic size dimorphism in spiders.


Subject(s)
Spiders/anatomy & histology , Spiders/genetics , Animals , Biological Evolution , Body Size , Female , Genitalia/anatomy & histology , Male , Organ Size , Phylogeny , Sex Characteristics , Sexual Behavior, Animal
14.
Sci Rep ; 6: 25128, 2016 04 29.
Article in English | MEDLINE | ID: mdl-27126507

ABSTRACT

Several clades of spiders whose females evolved giant sizes are known for extreme sexual behaviors such as sexual cannibalism, opportunistic mating, mate-binding, genital mutilation, plugging, and emasculation. However, these behaviors have only been tested in a handful of size dimorphic spiders. Here, we bring another lineage into the picture by reporting on sexual behavior of Darwin's bark spider, Caerostris darwini. This sexually size dimorphic Madagascan species is known for extreme web gigantism and for producing the world's toughest biomaterial. Our field and laboratory study uncovers a rich sexual repertoire that predictably involves cannibalism, genital mutilation, male preference for teneral females, and emasculation. Surprisingly, C. darwini males engage in oral sexual encounters, rarely reported outside mammals. Irrespective of female's age or mating status males salivate onto female genitalia pre-, during, and post-copulation. While its adaptive significance is elusive, oral sexual contact in spiders may signal male quality or reduce sperm competition.


Subject(s)
Sexual Behavior, Animal , Spiders/physiology , Animals , Female , Male
15.
Proc Biol Sci ; 282(1808): 20142486, 2015 Jun 07.
Article in English | MEDLINE | ID: mdl-25948684

ABSTRACT

Living fossils are lineages that have retained plesiomorphic traits through long time periods. It is expected that such lineages have both originated and diversified long ago. Such expectations have recently been challenged in some textbook examples of living fossils, notably in extant cycads and coelacanths. Using a phylogenetic approach, we tested the patterns of the origin and diversification of liphistiid spiders, a clade of spiders considered to be living fossils due to their retention of arachnid plesiomorphies and their exclusive grouping in Mesothelae, an ancient clade sister to all modern spiders. Facilitated by original sampling throughout their Asian range, we here provide the phylogenetic framework necessary for reconstructing liphistiid biogeographic history. All phylogenetic analyses support the monophyly of Liphistiidae and of eight genera. As the fossil evidence supports a Carboniferous Euramerican origin of Mesothelae, our dating analyses postulate a long eastward over-land dispersal towards the Asian origin of Liphistiidae during the Palaeogene (39-58 Ma). Contrary to expectations, diversification within extant liphistiid genera is relatively recent, in the Neogene and Late Palaeogene (4-24 Ma). While no over-water dispersal events are needed to explain their evolutionary history, the history of liphistiid spiders has the potential to play prominently in vicariant biogeographic studies.


Subject(s)
Arthropod Proteins/genetics , Biological Evolution , Phylogeny , Spiders/classification , Spiders/genetics , Animals , Asia, Southeastern , Asia, Eastern , Molecular Sequence Data , Sequence Analysis, DNA
16.
Evolution ; 68(10): 2861-72, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25130435

ABSTRACT

Sexual dimorphism describes substantial differences between male and female phenotypes. In spiders, sexual dimorphism research almost exclusively focuses on size, and recent studies have recovered steady evolutionary size increases in females, and independent evolutionary size changes in males. Their discordance is due to negative allometric size patterns caused by different selection pressures on male and female sizes (converse Rensch's rule). Here, we investigated macroevolutionary patterns of sexual size dimorphism (SSD) in Argiopinae, a global lineage of orb-weaving spiders with varying degrees of SSD. We devised a Bayesian and maximum-likelihood molecular species-level phylogeny, and then used it to reconstruct sex-specific size evolution, to examine general hypotheses and different models of size evolution, to test for sexual size coevolution, and to examine allometric patterns of SSD. Our results, revealing ancestral moderate sizes and SSD, failed to reject the Brownian motion model, which suggests a nondirectional size evolution. Contrary to predictions, male and female sizes were phylogenetically correlated, and SSD evolution was isometric. We interpret these results to question the classical explanations of female-biased SSD via fecundity, gravity, and differential mortality. In argiopines, SSD evolution may be driven by these or additional selection mechanisms, but perhaps at different phylogenetic scales.


Subject(s)
Biological Evolution , Body Size/genetics , Phylogeny , Sex Characteristics , Spiders/genetics , Animals , Bayes Theorem , Female , Likelihood Functions , Male , Models, Genetic , Sequence Analysis, DNA , Spiders/anatomy & histology
17.
PLoS One ; 9(1): e86780, 2014.
Article in English | MEDLINE | ID: mdl-24466238

ABSTRACT

BACKGROUND: Biogeography models typically focus on explaining patterns through island properties, such as size, complexity, age, and isolation. Such models explain variation in the richness of island biotas. Properties of the organisms themselves, such as their size, age, and dispersal abilities, in turn may explain which organisms come to occupy, and diversify across island archipelagos. Here, we restate and test the intermediate dispersal model (IDM) predicting peak diversity in clades of relatively intermediate dispersers. METHODOLOGY: We test the model through a review of terrestrial and freshwater organisms in the western Indian Ocean examining the correlation among species richness and three potential explanatory variables: dispersal ability quantified as the number of estimated dispersal events, average body size for animals, and clade age. CONCLUSIONS: Our study supports the IDM with dispersal ability being the best predictor of regional diversity among the explored variables. We find a weaker relationship between diversity and clade age, but not body size. Principally, we find that richness strongly and positively correlates with dispersal ability in poor to good dispersers while a prior study found a strong decrease in richness with increased dispersal ability among excellent dispersers. Both studies therefore support the intermediate dispersal model, especially when considered together. We note that many additional variables not here considered are at play. For example, some taxa may lose dispersal ability subsequent to island colonization and some poor dispersers have reached high diversity through within island radiations. Nevertheless, our findings highlight the fundamental importance of dispersal ability in explaining patterns of biodiversity generation across islands.


Subject(s)
Biota , Geography , Animals , Body Size/physiology , Fresh Water , Indian Ocean , Islands
18.
Proc Biol Sci ; 278(1710): 1356-64, 2011 May 07.
Article in English | MEDLINE | ID: mdl-20961898

ABSTRACT

Many spiders possess myrmecomorphy, and species of the jumping spider genus Myrmarachne exhibit nearly perfect ant mimicry. Most salticids are diurnal predators with unusually high visual acuity that prey on various arthropods, including conspecifics. In this study, we tested whether predation pressure from large jumping spiders is one possible driving force of perfect ant mimicry in jumping spiders. The results showed that small non-ant-mimicking jumping spiders were readily treated as prey by large ones (no matter whether heterospecific or conspecific) and suffered high attack and mortality rates. The size difference between small and large jumping spiders significantly affected the outcomes of predatory interactions between them: the smaller the juvenile jumping spiders, the higher the predation risk from large ones. The attack and mortality rates of ant-mimicking jumping spiders were significantly lower than those of non-ant-mimicking jumping spiders, indicating that a resemblance to ants could provide protection against salticid predation. However, results of multivariate behavioural analyses showed that the responses of large jumping spiders to ants and ant-mimicking salticids differed significantly. Results of this study indicate that predation pressure from large jumping spiders might be one selection force driving the evolution of nearly perfect myrmecomorphy in spiders and other arthropods.


Subject(s)
Ants/physiology , Spiders/anatomy & histology , Spiders/physiology , Animals , Biological Evolution , Body Size , Food Chain , Predatory Behavior , Spiders/genetics , Taiwan
SELECTION OF CITATIONS
SEARCH DETAIL
...