Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Biophys J ; 39(5): 839-53, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20054687

ABSTRACT

Calcium channels play crucial physiological roles. In the absence of high-resolution structures of the channels, the mechanism of ion permeation is unknown. Here we used a method proposed in an accompanying paper (Cheng and Zhorov in Eur Biophys J, 2009) to predict possible chelation patterns of calcium ions in a structural model of the L-type calcium channel. We compared three models in which two or three calcium ions interact with the four selectivity filter glutamates and a conserved aspartate adjacent to the glutamate in repeat II. Monte Carlo energy minimizations yielded many complexes with calcium ions bound to at least two selectivity filter carboxylates. In these complexes calcium-carboxylate attractions are counterbalanced by calcium-calcium and carboxylate-carboxylate repulsions. Superposition of the complexes suggests a high degree of mobility of calcium ions and carboxylate groups of the glutamates. We used the predicted complexes to propose a permeation mechanism that involves single-file movement of calcium ions. The key feature of this mechanism is the presence of bridging glutamates that coordinate two calcium ions and enable their transitions between different chelating patterns involving four to six oxygen atoms from the channel protein. The conserved aspartate is proposed to coordinate a calcium ion incoming to the selectivity filter from the extracellular side. Glutamates in repeats III and IV, which are most distant from the repeat II aspartate, are proposed to coordinate the calcium ion that leaves the selectivity filter to the inner pore. Published experimental data and earlier proposed permeation models are discussed in view of our model.


Subject(s)
Calcium Channels, L-Type/chemistry , Calcium Channels, L-Type/ultrastructure , Calcium/chemistry , Models, Chemical , Models, Molecular , Binding Sites , Computer Simulation , Protein Binding
2.
Eur Biophys J ; 39(5): 825-38, 2010 Apr.
Article in English | MEDLINE | ID: mdl-19937325

ABSTRACT

A method of docking Ca(2+) ions in proteins with flexible side chains and deformable backbones is proposed. The energy was calculated with the AMBER force field, implicit solvent, and solvent exposure-dependent and distance-dependent dielectric function. Starting structures were generated with Ca(2+) coordinates and side-chain torsions sampled in 1000 A(3) cubes centered at the experimental Ca(2+) positions. The energy was Monte Carlo-minimized. The method was tested on fourteen Ca(2+)-binding sites. For twelve Ca(2+)-binding sites the root mean square (RMS) deviation of the apparent global minimum from the experimental structure was below 1.3 and 1.7 A for Ca(2+) ions and side-chain heavy atoms, respectively. Energies of multiple local minima correlate with the RMS deviations from the X-ray structures. Two Ca(2+)-binding sites at the surface of proteinase K were not predicted, because of underestimation of Ca(2+) hydration energy by the implicit-solvent method.


Subject(s)
Calcium-Binding Proteins/chemistry , Calcium/chemistry , Models, Chemical , Models, Molecular , Binding Sites , Computer Simulation , Elastic Modulus , Ions , Protein Binding
3.
J Biol Chem ; 284(41): 28332-28342, 2009 Oct 09.
Article in English | MEDLINE | ID: mdl-19700404

ABSTRACT

Phenylalkylamines (PAAs), a major class of L-type calcium channel (LTCC) blockers, have two aromatic rings connected by a flexible chain with a nitrile substituent. Structural aspects of ligand-channel interactions remain unclear. We have built a KvAP-based model of LTCC and used Monte Carlo energy minimizations to dock devapamil, verapamil, gallopamil, and other PAAs. The PAA-LTCC models have the following common features: (i) the meta-methoxy group in ring A, which is proximal to the nitrile group, accepts an H-bond from a PAA-sensing Tyr_IIIS6; (ii) the meta-methoxy group in ring B accepts an H-bond from a PAA-sensing Tyr_IVS6; (iii) the ammonium group is stabilized at the focus of P-helices; and (iv) the nitrile group binds to a Ca(2+) ion coordinated by the selectivity filter glutamates in repeats III and IV. The latter feature can explain Ca(2+) potentiation of PAA action and the presence of an electronegative atom at a similar position of potent PAA analogs. Tyr substitution of a Thr in IIIS5 is known to enhance action of devapamil and verapamil. Our models predict that the para-methoxy group in ring A of devapamil and verapamil accepts an H-bond from this engineered Tyr. The model explains structure-activity relationships of PAAs, effects of LTCC mutations on PAA potency, data on PAA access to LTCC, and Ca(2+) potentiation of PAA action. Common and class-specific aspects of action of PAAs, dihydropyridines, and benzothiazepines are discussed in view of the repeat interface concept.


Subject(s)
Calcium Channel Blockers , Calcium Channels, L-Type/chemistry , Calcium Channels, L-Type/metabolism , Models, Molecular , Protein Structure, Tertiary , Amino Acid Sequence , Binding Sites , Calcium Channel Blockers/chemistry , Calcium Channel Blockers/metabolism , Calcium Channels, L-Type/genetics , Computer Simulation , Dihydropyridines/chemistry , Gallopamil/chemistry , Gallopamil/metabolism , Molecular Sequence Data , Molecular Structure , Monte Carlo Method , Sequence Alignment , Structure-Activity Relationship , Verapamil/analogs & derivatives , Verapamil/chemistry , Verapamil/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...