Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Drug Policy ; 88: 103026, 2021 02.
Article in English | MEDLINE | ID: mdl-33246266

ABSTRACT

BACKGROUND: In the summer of 2019, e-cigarette, or vaping, product use-associated lung injury (EVALI) was detected in the United States. Multiple agencies reported illicit tetrahydrocannabinol (THC)-containing e-cigarette, or vaping, products containing vitamin E acetate (VEA) as a substance of concern. METHODS: As an expansion of the Utah Department of Health's response to EVALI, the Utah Public Health Laboratory and the Utah Department of Public Safety screened 170 products from 96 seizures between October 2018 and January 2020. Using Pearson's correlation coefficient, we analyzed the temporal correlation of national, and Utah specific case counts, and the percentage of seizures indicating VEA by month. RESULTS: The findings indicate strong and significant correlations between seizures indicating VEA and both the national (r = 0.70, p = 0.002) and Utah specific (r = 0.78, p < 0.001) case counts. CONCLUSION: These findings underscore that VEA should not be added to e-cigarettes, or vaping, products and the importance of collaboration with law enforcement when responding to outbreaks associated with illicit substances.


Subject(s)
Electronic Nicotine Delivery Systems , Vaping , Acetates , Dronabinol , Humans , Law Enforcement , Public Health , United States/epidemiology , Utah/epidemiology , Vitamin E
2.
Cancer Res ; 71(24): 7568-75, 2011 Dec 15.
Article in English | MEDLINE | ID: mdl-22037877

ABSTRACT

Gliomas, which generally have a poor prognosis, are the most common primary malignant brain tumors in adults. Recent genome-wide association studies have shown that inherited susceptibility plays a role in the development of glioma. Although first-degree relatives of patients exhibit a two-fold increased risk of glioma, the search for susceptibility loci in familial forms of the disease has been challenging because the disease is relatively rare, fatal, and heterogeneous, making it difficult to collect sufficient biosamples from families for statistical power. To address this challenge, the Genetic Epidemiology of Glioma International Consortium (Gliogene) was formed to collect DNA samples from families with two or more cases of histologically confirmed glioma. In this study, we present results obtained from 46 U.S. families in which multipoint linkage analyses were undertaken using nonparametric (model-free) methods. After removal of high linkage disequilibrium single-nucleotide polymorphism, we obtained a maximum nonparametric linkage score (NPL) of 3.39 (P = 0.0005) at 17q12-21.32 and the Z-score of 4.20 (P = 0.000007). To replicate our findings, we genotyped 29 independent U.S. families and obtained a maximum NPL score of 1.26 (P = 0.008) and the Z-score of 1.47 (P = 0.035). Accounting for the genetic heterogeneity using the ordered subset analysis approach, the combined analyses of 75 families resulted in a maximum NPL score of 3.81 (P = 0.00001). The genomic regions we have implicated in this study may offer novel insights into glioma susceptibility, focusing future work to identify genes that cause familial glioma.


Subject(s)
Brain Neoplasms/genetics , Genetic Predisposition to Disease/genetics , Genome, Human/genetics , Genome-Wide Association Study/methods , Glioma/genetics , Polymorphism, Single Nucleotide , Adolescent , Adult , Aged , Brain Neoplasms/pathology , Child , Chromosome Mapping , Family Health , Female , Genetic Heterogeneity , Genotype , Glioma/pathology , Humans , Linkage Disequilibrium , Lod Score , Male , Middle Aged , Pedigree , United States , Young Adult
3.
J Magn Reson Imaging ; 26(4): 992-1000, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17896352

ABSTRACT

PURPOSE: To quantify the accuracy of magnetic resonance imaging (MRI) measurement of change in cartilage volume due to thin linear excisions, simulating arthritic cartilage losses, by comparison with laboratory volume measurements in an ex vivo porcine model. MATERIALS AND METHODS: We scanned 15 porcine patellae by T1-weighted spoiled gradient echo (SPGR) MRI at baseline and after excision of up to three thin layers of articular cartilage. Excised fragment volume was determined from density and weight. Postexcision scans were "fused" to the baseline scan by three-dimensional (3D) registration. This allowed automated recalculation of the remaining cartilage volume within a baseline region of interest (ROI) following each excision. We compared MRI estimates of change in cartilage volume to direct laboratory measurement of fragment volume. RESULTS: Our 38 excised fragments averaged 0.16 mL, or approximately 7% of cartilage volume. MRI and laboratory estimates of total cartilage volume loss differed by 1.6% +/- 13.2% (mean, coefficient of variation [CV]). Accuracy was +/-0.1 mL for 95% of scans. CONCLUSION: MRI estimates of small changes in porcine patellar cartilage volume were unbiased, reliable, and accurate to 0.1 mL. Despite a proportionately high error in the very thin fragments tested, achievement of similar accuracy in vivo would be adequate to detect approximately two years of osteoarthritic cartilage loss.


Subject(s)
Arthritis/diagnosis , Arthritis/pathology , Cartilage, Articular/pathology , Knee Joint/pathology , Magnetic Resonance Imaging/methods , Animals , Disease Models, Animal , Humans , Image Processing, Computer-Assisted , Knee/pathology , Osteoarthritis/pathology , Reproducibility of Results , Swine
4.
Nucleic Acids Res ; 32(9): e69, 2004 May 17.
Article in English | MEDLINE | ID: mdl-15148342

ABSTRACT

Besides their use in mRNA expression profiling, oligonucleotide microarrays have also been applied to single-nucleotide polymorphism (SNP) and loss of heterozygosity (LOH) or allelic imbalance studies. In this report, we evaluate the reliability of using whole genome amplified DNA for analysis with an oligonucleotide microarray containing 11 560 SNPs to detect allelic imbalance and chromosomal copy number abnormalities. Whole genome SNP analyses were performed with DNA extracted from osteosarcoma tissues and patient-matched blood. SNP calls were then generated by Affymetrix GeneChip DNA Analysis Software. In two osteosarcoma cases, using unamplified DNA, we identified 793 and 1070 SNP loci with allelic imbalance, respectively. In a parallel experiment with amplified DNA, 78% and 83% of these SNP loci with allelic imbalance was detected. The average false-positive rate is 13.8%. Furthermore, using the Affymetrix GeneChip Chromosome Copy Number Tool to analyze the SNP array data, we were able to detect identical chromosomal regions with gain or loss in both amplified and unamplified DNA at cytoband resolution.


Subject(s)
Genome, Human , Loss of Heterozygosity/genetics , Oligonucleotide Array Sequence Analysis/methods , Osteosarcoma/genetics , Polymorphism, Single Nucleotide/genetics , Chromosomes, Human, Pair 6/genetics , False Positive Reactions , Genomics/methods , Humans , Microsatellite Repeats/genetics , Nucleic Acid Amplification Techniques , Sensitivity and Specificity
5.
Toxicol Appl Pharmacol ; 182(1): 55-65, 2002 Jul 01.
Article in English | MEDLINE | ID: mdl-12127263

ABSTRACT

Determining the key events in the induction of liver cancer in mice by trichloroethylene (TRI) is important in the determination of how risks from this chemical should be treated at low doses. At least two metabolites can contribute to liver cancer in mice, dichloroacetate (DCA) and trichloroacetate (TCA). TCA is produced from metabolism of TRI at systemic concentrations that can clearly contribute to this response. As a peroxisome proliferator and a species-specific carcinogen, TCA may not be important in the induction of liver cancer in humans at the low doses of TRI encountered in the environment. Because DCA is metabolized much more rapidly than TCA, it has not been possible to directly determine whether it is produced at carcinogenic levels. Unlike TCA, DCA is active as a carcinogen in both mice and rats. Its low-dose effects are not associated with peroxisome proliferation. The present study examines whether biomarkers for DCA and TCA can be used to determine if the liver tumor response to TRI seen in mice is completely attributable to TCA or if other metabolites, such as DCA, are involved. Previous work had shown that DCA produces tumors in mice that display a diffuse immunoreactivity to a c-Jun antibody (Santa Cruz Biotechnology, SC-45), whereas TCA-induced tumors do not stain with this antibody. In the present study, we compared the c-Jun phenotype of tumors induced by DCA or TCA alone to those induced when they are given together in various combinations and to those induced by TRI given in an aqueous vehicle. When given in various combinations, DCA and TCA produced a few tumors that were c-Jun+, many that were c-Jun-, but a number with a mixed phenotype that increased with the relative dose of DCA. Sixteen TRI-induced tumors were c-Jun+, 13 were c-Jun-, and 9 had a mixed phenotype. Mutations of the H-ras protooncogene were also examined in DCA-, TCA-, and TRI-induced tumors. The mutation frequency detected in tumors induced by TCA was significantly different from that observed in TRI-induced tumors (0.44 vs 0.21, p < 0.05), whereas that observed in DCA-induced tumors (0.33) was intermediate between values obtained with TCA and TRI, but not significantly different from TRI. No significant differences were found in the mutation spectra of tumors produced by the three compounds. The presence of mutations in H-ras codon 61 appeared to be a late event, but ras-dependent signaling pathways were activated in all tumors. These data are not consistent with the hypothesis that all liver tumors induced by TRI were produced by TCA.


Subject(s)
Dichloroacetic Acid/toxicity , Liver Neoplasms/chemically induced , Trichloroacetic Acid/toxicity , Trichloroethylene/toxicity , Animals , Blotting, Western , DNA, Neoplasm/chemistry , DNA, Neoplasm/genetics , Drug Interactions , Genes, jun/genetics , Genes, ras/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Male , Mice , Mutation , Polymerase Chain Reaction , Random Allocation , Sequence Analysis, DNA , Solvents/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...