Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 673
Filter
1.
BMC Genomics ; 25(1): 434, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38693497

ABSTRACT

BACKGROUND: WOX genes are a class of plant-specific transcription factors. The WUSCHEL-related homeobox (WOX) family is a member of the homeobox transcription factor superfamily. Previous studies have shown that WOX members play important roles in plant growth and development. However, studies of the WOX gene family in blueberry plants have not been reported. RESULTS: In order to understand the biological function of the WOX gene family in blueberries, bioinformatics were used methods to identify WOX gene family members in the blueberry genome, and analyzed the basic physical and chemical properties, gene structure, gene motifs, promoter cis-acting elements, chromosome location, evolutionary relationships, expression pattern of these family members and predicted their functions. Finally, 12 genes containing the WOX domain were identified and found to be distributed on eight chromosomes. Phylogenetic tree analysis showed that the blueberry WOX gene family had three major branches: ancient branch, middle branch, and WUS branch. Blueberry WOX gene family protein sequences differ in amino acid number, molecular weight, isoelectric point and hydrophobicity. Predictive analysis of promoter cis-acting elements showed that the promoters of the VdWOX genes contained abundant light response, hormone, and stress response elements. The VdWOX genes were induced to express in both stems and leaves in response to salt and drought stress. CONCLUSIONS: Our results provided comprehensive characteristics of the WOX gene family and important clues for further exploration of its role in the growth, development and resistance to various stress in blueberry plants.


Subject(s)
Blueberry Plants , Phylogeny , Promoter Regions, Genetic , Blueberry Plants/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Genome, Plant , Multigene Family , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Stress, Physiological/genetics , Chromosomes, Plant/genetics , Evolution, Molecular , Computational Biology/methods
2.
Micromachines (Basel) ; 15(5)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38793158

ABSTRACT

As a cutting-edge technology, animal robots based on living organisms are being extensively studied, with potential for diverse applications in the fields of neuroscience, national security, and civil rescue. However, it remains a significant challenge to reliably control the animal robots with the objective of protecting their long-term survival, and this has seriously hindered their practical implementation. To address this issue, this work explored the use of a bio-friendly neurostimulation system that includes integrated stimulation electrodes together with a remote wireless stimulation circuit to control the moving behavior of rat robots. The integrated electrodes were implanted simultaneously in four stimulation sites, including the medial forebrain bundle (MFB) and primary somatosensory cortex, barrel field (S1BF). The control system was able to provide flexibility in adjusting the following four stimulation parameters: waveform, amplitude, frequency, and duration time. The optimized parameters facilitated the successful control of the rat's locomotion, including forward movement and left and right turns. After training for a few cycles, the rat robots could be guided along a designated route to complete the given mission in a maze. Moreover, it was found that the rat robots could survive for more than 20 days with the control system implanted. These findings will ensure the sustained and reliable operation of the rat robots, laying a robust foundation for advances in animal robot regulation technology.

3.
Sci Adv ; 10(21): eadn9959, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38787957

ABSTRACT

P-type Bi2-xSbxTe3 compounds are crucial for thermoelectric applications at room temperature, with Bi0.5Sb1.5Te3 demonstrating superior performance, attributed to its maximum density-of-states effective mass (m*). However, the underlying electronic origin remains obscure, impeding further performance optimization. Herein, we synthesized high-quality Bi2-xSbxTe3 (00 l) films and performed comprehensive angle-resolved photoemission spectroscopy (ARPES) measurements and band structure calculations to shed light on the electronic structures. ARPES results directly evidenced that the band convergence along the [Formula: see text]-[Formula: see text] direction contributes to the maximum m* of Bi0.5Sb1.5Te3. Moreover, strategic manipulation of intrinsic defects optimized the hole density of Bi0.5Sb1.5Te3, allowing the extra valence band along [Formula: see text]-[Formula: see text] to contribute to the electrical transport. The synergy of the above two aspects documented the electronic origins of the Bi0.5Sb1.5Te3's superior performance that resulted in an extraordinary power factor of ~5.5 milliwatts per meter per square kelvin. The study offers valuable guidance for further performance optimization of p-type Bi2-xSbxTe3.

4.
J Biochem Mol Toxicol ; 38(6): e23746, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38769694

ABSTRACT

To identify the role of enterotoxin-related genes in colorectal cancer (CRC) development and progression. Upregulated differentially expressed genes shared by three out of five Gene Expression Omnibus (GEO) data sets were included to screen the key enterotoxin-induced oncogenes (EIOGs) according to criteria oncogene definition, enrichment, and protein-protein interaction (PPI) network analysis, followed by prognosis survival, immune infiltration, and protential drugs analyses was performed via integration of RNA-sequencing data and The Cancer Genome Atlas-derived clinical profiles. We screened nine common key EIOGs from at least three GEO data sets. A Cox proportional hazards regression models verified that more alive cases, decreased overall survival, and highest 4-year survival prediction in CRC patients with high-risk score. Protein tyrosine phosphatase receptor type F polypeptide-interacting protein alpha-4 (PPFIA4), STY11, SCN3B, and SPTBN5 were shared in the same PPI network. Immune infiltration results showed that SCN3B and synaptotagmin 11 expression were obviously associated with B cell, macrophage, myeloid dendritic cell, neutrophils, and T cell CD4+ and CD8+ in both colon adenocarcinoma and rectal adenocarcinoma. CHIR-99021, MLN4924, and YK4-279 were identified as the potential drugs for treatment. Finally, upregulated EIOGs genes PPFIA4 and SCN3B were found in colon adenocarcinoma and PPFIA4 and SCN3B were proved to promote cell proliferation and migration in vitro. We demonstrated here that EIOGs promoting a malignancy phenotype was related with poor survival and prognosis in CRC, which might be served as novel therapeutic targets in CRC management.


Subject(s)
Colorectal Neoplasms , Enterotoxins , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Disease Progression , Gene Expression Regulation, Neoplastic , Protein Interaction Maps
5.
Pediatr Obes ; : e13127, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38747282

ABSTRACT

BACKGROUND: Lifestyle factors play an important role in the development and management of childhood obesity and its related cardiometabolic complications. OBJECTIVE/METHODS: We aimed to explore childhood obesity subtypes based on lifestyle factors and examine their association with cardiometabolic health. We included 1550 children with obesity from the National Health and Nutrition Examination Survey. Cluster analysis identified obesity subtypes based on four lifestyle factors (physical activity, diet quality, sedentary time and smoking). Multiple linear regression assessed their association with cardiometabolic factors. RESULTS: Five subtypes of childhood obesity were identified: unhealthy subtype (n = 571; 36.8%), physically active subtype (n = 185; 21.1%), healthy diet subtype (n = 404; 26.1%), smoking subtype (n = 125; 8.1%) and non-sedentary subtype (n = 265; 17.1%). Compared with the unhealthy subtype, the physically active subtype had lower insulin and HOMA-IR levels, and smoking subtype was associated with lower HDL levels. When compared with children with normal weight, all obesity subtypes had worse cardiometabolic profile, except the physically active subtype who had similar DBP, HbA1c and TC levels; smoking subtype who had similar TC levels; and healthy diet and non-sedentary subtypes who had similar DBP levels. CONCLUSION: Children of different lifestyle-based obesity subtypes might have different cardiometabolic risks. Our new classification system might help personalize assessment of childhood obesity.

6.
Waste Manag ; 182: 186-196, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38670002

ABSTRACT

Current Li-ion battery (LIB) recycling methods exhibit the disadvantages of low metal recovery efficiencies and high levels of pollution and energy consumption. Here, products generated via the in-situ catalytic pyrolysis of bamboo sawdust (BS) were utilized to regulate the crystal phase and nanoscale size of the NCM cathode to enhance the selective Li extraction and leaching efficiencies of other valuable metals from spent LIBs. The catalytic effect of the NCM cathode significantly promoted the release of gases from BS pyrolysis. These gases (H2, CO, and CH4) finally transformed the crystal phase of the NCM cathode from LiNixCoyMnzO2 into (Ni-Co/MnO/Li2CO3)/C. The size of the spent NCM cathode material was reduced approximately 31.7-fold (from 4.1 µm to 129.2 nm) after roasting. This could be ascribed to the in-situ catalytic decomposition of aromatic compounds generated via the primary pyrolysis of BS into C and H2 on the surface of the cathode material, resulting in the formation of the nanoscale composite (Ni-Co/MnO/Li2CO3)/C. This process enabled the targeted control of the crystal phase and nanoscale size of the material. Water leaching studies revealed a remarkable selective Li extraction efficiency of 99.27 %, and sulfuric acid leaching experiments with a concentration of 2 M revealed high extraction efficiencies of 99.15 % (Ni), 93.87 % (Co), and 99.46 % (Mn). Finally, a novel mechanism involving synergistic thermo-reduction and carbon modification for crystal phase regulation and nanoscale control was proposed. This study provides a novel concept for use in enhancing the recycling of valuable metals from spent LIBs utilizing biomass waste and practices the concept of "treating waste with waste".


Subject(s)
Electric Power Supplies , Lithium , Pyrolysis , Recycling , Recycling/methods , Lithium/chemistry , Catalysis , Electrodes
7.
Neurol Res ; 46(6): 561-567, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38563313

ABSTRACT

OBJECTIVE: This retrospective study was conducted to investigate the application value of metagenomics next generation sequencing (mNGS) technology in the diagnosis and treatment of neonatal infectious meningitis. METHODS: From 1 January 2020 to 31 December 2022, 73 newborns suspected of infectious meningitis were hospitalized. After screening by inclusion and exclusion criteria, 69 newborns were subsequently included in the study, containing 27 cases with positive mNGS result and 42 cases with negative mNGS result. Furthermore, according to the diagnosis of meningitis, mNGS positive group and mNGS negative group were further divided into infectious meningitis with mNGS (+) group (n = 27) and infectious meningitis with mNGS (-) group (n = 26), respectively. RESULTS: (1) Compared with cerebrospinal fluid (CSF) culture, mNGS has better diagnostic value [positive predictive value (PPV) = 100.00% (27/27), negative predictive value (NPV) = 38.10% (16/42), agreement rate = 62.32% (43/69), area under the curve (AUC) = 0.750, 95% confidence interval (CI): 0.636-0.864]. (2) There were significant differences in the onset age, age at first CSF test, CSF leukocyte count, CSF glucose, positive rate of CSF culture, blood leukocyte count, procalcitonin (PCT), C-reaction protein (CRP), age at first mNGS test and adjusting anti-infective medication in the comparison between infectious meningitis with mNGS (+) group and infectious meningitis with mNGS (-) group (p < 0.05). (3) mNGS could help improve the cure rate [crude odds ratio (OR) = 3.393, 95%CI: 1.072-10.737; adjusted OR = 15.580, 95%CI: 2.114-114.798]. CONCLUSION: Compared with classic meningitis detection methods, mNGS has better PPV, NPV, agreement rate, and AUC. mNGS could help improve the cure rate.


Subject(s)
High-Throughput Nucleotide Sequencing , Metagenomics , Humans , Retrospective Studies , Infant, Newborn , Male , Female , Metagenomics/methods , High-Throughput Nucleotide Sequencing/methods , Case-Control Studies , Meningitis, Bacterial/diagnosis , Meningitis, Bacterial/cerebrospinal fluid , Meningitis, Bacterial/drug therapy , Meningitis, Bacterial/therapy
8.
Exp Gerontol ; 191: 112426, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38604250

ABSTRACT

INTRODUCTION: Motoric cognitive risk syndrome (MCR), characterized by subjective cognitive complaints and slow gait in older populations, is associated with sleep duration. However, the association between MCR and daytime nap duration has not been thoroughly explored. METHODS: Baseline data from the China Health and Retirement Longitudinal Study (CHARLS) were used in this study. MCR was defined as the coexistence of subjective cognitive complaints and objective slow gait speed without a history of dementia or mobility disability. Daytime nap duration was categorized into four groups: no napping, short napping (<30 min), moderate napping (30-89 min) and extended napping (≥90 min). Multivariable logistic regression models were used to explore the association of daytime napping duration and MCR. RESULTS: A total of 4230 individuals aged ≥60 were included in the current analysis, of which 463 were diagnosed with MCR. Moderate napping of 30-89 min per day was found to be significantly associated with lower odds of MCR compared with the reference group of no napping. In subgroup analysis, individuals with sleep durations of <7 h per night had lower odds of MCR in the model that adjusted for all potential confounders with ≥30 min daytime nap duration compared with no napping. Interestingly, for people with a night sleep duration of 7-8 h, only those with a moderate nap of 30-89 min had lower odds of MCR than non-nappers after adjustment for potential confounders. CONCLUSION: A moderate nap of 30-89 min could lower the odds of MCR, especially for older adults with a night sleep duration of ≤8 h.


Subject(s)
Sleep , Humans , Male , Female , Aged , China/epidemiology , Longitudinal Studies , Sleep/physiology , Middle Aged , Time Factors , Risk Factors , Walking Speed , Logistic Models , Cognition , Retirement , Aged, 80 and over , Cognitive Dysfunction/epidemiology
9.
BMC Pediatr ; 24(1): 272, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664650

ABSTRACT

INTRODUCTION: Neonatal respiratory failure (NRF) is a serious condition that often has high mortality and morbidity, effective interventions can be delivered in the future by identifying the risk factors associated with morbidity and mortality. However, recent advances in respiratory support have improved neonatal intensive care units (NICUs) care in China. We aimed to provide an updated review of the clinical profile and outcomes of NRF in the Jiangsu province. METHODS: Infants treated for NRF in the NICUs of 28 hospitals between March 2019 and March 2022 were retrospectively reviewed. Data collected included baseline perinatal and neonatal parameters, NICU admission- and treatment-related data, and patient outcomes in terms of mortality, major morbidity, and survival without major morbidities. RESULTS: A total of 5548 infants with NRF were included in the study. The most common primary respiratory disorder was respiratory distress syndrome (78.5%). NRF was managed with non-invasive and invasive respiratory support in 59.8% and 14.5% of patients, respectively. The application rate of surfactant therapy was 38.5%, while that of neonatal extracorporeal membrane oxygenation therapy was 0.2%. Mortality and major morbidity rates of 8.5% and 23.2% were observed, respectively. Congenital anomalies, hypoxic-ischemic encephalopathy, invasive respiratory support only and inhaled nitric oxide therapy were found to be significantly associated with the risk of death. Among surviving infants born at < 32 weeks of gestation or with a birth weight < 1500 g, caffeine therapy and repeat mechanical ventilation were demonstrated to significantly associate with increased major morbidity risk. CONCLUSION: Our study demonstrates the current clinical landscape of infants with NRF treated in the NICU, and, by proxy, highlights the ongoing advancements in the field of perinatal and neonatal intensive care in China.


Subject(s)
Intensive Care Units, Neonatal , Respiratory Distress Syndrome, Newborn , Humans , Infant, Newborn , China/epidemiology , Retrospective Studies , Female , Male , Respiratory Distress Syndrome, Newborn/therapy , Respiratory Insufficiency/therapy , Pulmonary Surfactants/therapeutic use , Pulmonary Surfactants/administration & dosage , Extracorporeal Membrane Oxygenation , Respiration, Artificial/statistics & numerical data , Treatment Outcome
10.
Saudi Med J ; 45(4): 369-378, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38657990

ABSTRACT

OBJECTIVES: To examine the risk factors for severe bronchopulmonary dysplasia (BPD) in a cohort of very preterm infants (VPIs) in China, as BPD is common among VPIs and associated with a high mortality rate. METHODS: In this multicenter retrospective study, medical records from infants with BPD born at gestation age (GA) of <32 weeks with birth weight (BW) of <1,500 grams (g) in 7 regions of China were included. The cohort was stratified into different BPD severity groups based on their fraction of inspired oxygen requirement at a modified GA of 36 weeks or post discharge. Risk factors were identified using logistic regression analysis. RESULTS: A significant inverse correlation was revealed between BPD severity and both GA and BW (p<0.001). Independent risk factors for severe BPD (sBPD) were identified as invasive mechanical ventilation (≥7d), multiple blood transfusion (≥3), nosocomial infection (NI), hemodynamically significant patent ductus arteriosus (hsPDA), delayed initiation of enteral nutrition, and longer time to achieve total caloric intake of 110 kcal/kg. Conversely, administration of antenatal steroids was associated with reduced risk of sBPD. CONCLUSION: Our study not only reaffirmed the established risk factors of low GA and BW for sBPD in VPIs, but also identified additional, potentially modifiable risk factors. Further research is warranted to explore whether intervention in these modifiable factors might reduce the risk of sBPD.Clinical Trial Reg. No.: ChiCTR1900023418.


Subject(s)
Bronchopulmonary Dysplasia , Humans , Bronchopulmonary Dysplasia/epidemiology , Risk Factors , Infant, Newborn , China/epidemiology , Male , Female , Retrospective Studies , Infant, Premature , Severity of Illness Index , Gestational Age , Infant, Extremely Premature , Cohort Studies , Respiration, Artificial , Ductus Arteriosus, Patent/epidemiology , Infant, Very Low Birth Weight , East Asian People
11.
Biomolecules ; 14(4)2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38672517

ABSTRACT

Obesity stands as a significant risk factor for type 2 diabetes, hyperlipidemia, and cardiovascular diseases, intertwining increased inflammation and decreased adipogenesis with metabolic disorders. Studies have highlighted the correlation between Caspase-1 and inflammation in obesity, elucidating its essential role in the biological functions of adipose tissue. However, the impact of Caspase-1 on adipogenesis and the underlying mechanisms remain largely elusive. In our study, we observed a positive correlation between Caspase-1 expression and obesity and its association with adipogenesis. In vivo experiments revealed that, under normal diet conditions, Caspase-1 deficiency improved glucose homeostasis, stimulated subcutaneous adipose tissue expansion, and enhanced adipogenesis. Furthermore, our findings indicate that Caspase-1 deficiency promotes the expression of autophagy-related proteins and inhibits autophagy with 3-MA or CQ blocked Caspase-1 deficiency-induced adipogenesis in vitro. Notably, Caspase-1 deficiency promotes adipogenesis via Atg7-mediated autophagy activation. In addition, Caspase-1 deficiency resisted against high-fat diet-induced obesity and glucose intolerance. Our study proposes the downregulation of Caspase-1 as a promising strategy for mitigating obesity and its associated metabolic disorders.


Subject(s)
Adipogenesis , Autophagy-Related Protein 7 , Autophagy , Caspase 1 , Inflammation , Obesity , Adipogenesis/genetics , Animals , Autophagy-Related Protein 7/genetics , Autophagy-Related Protein 7/metabolism , Mice , Caspase 1/metabolism , Caspase 1/genetics , Caspase 1/deficiency , Obesity/metabolism , Obesity/pathology , Obesity/genetics , Inflammation/metabolism , Inflammation/pathology , Inflammation/genetics , Male , Diet, High-Fat/adverse effects , Mice, Inbred C57BL , 3T3-L1 Cells , Mice, Knockout
12.
Heliyon ; 10(7): e29349, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38601641

ABSTRACT

Background and aim: Cystic dilatation of the gastric glands within the mucosal layer is the hallmark of the rare condition known as gastritis cystica profunda (GCP). Although it has been proved that GCP is the precursor lesion for early gastric cancer (EGC), the management strategy of GCP-related EGC is not well established.The purpose of this research was to determine if ESD is effective and safe for GCP-related EGC. Methods: Patients with EGC who had ESD at Beijing Friendship Hospital between January 2015 and May 2023 were retrospectively included. All patients were divided into two groups: those with GCP-related EGC, and those with EGC alone. The two groups were matched 1:1 using the propensity score matching (PSM) method. Curative resection rate, postoperative adverse outcome rate (bleeding, perforation, stricture), and recurrence rate were the primary measures used to evaluate the efficacy and safety of ESD. Results: There were a total of 386 participants (44 with GCP and 342 with EGC alone). Following PSM, 44 patients were paired and analyzed separately. Except for the presence of cysts in EUS (multiple/single/none cyst: 12/2/5 versus 1/0/25, P < 0.0001), there was no change in baseline characteristics, EUS appearance, or histology results between groups. Overall, there was no significant difference in curative resection rates between the GCP group (70.5 %) and the control group (81.8 %) (P = 0.211). Postoperative complications were comparative (9/44 vs 5/44, P = 0.244), as were rates of local recurrence (1/44 vs 0/44, P = 1.0), metachronous gastric cancer (1/44 vs 0/44, P = 1.0), and mortality (0/44 vs 0/44, P = 1.0). Conclusions: Existence of cysts in EUS is a characteristic presentation to distinguish GCP-related EGC from EGC-alone lesions. ESD might be a safe and effective therapy for patients with GCP-related EGC.

13.
Nat Microbiol ; 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649411

ABSTRACT

The cyclic-oligonucleotide-based anti-phage signalling system (CBASS) is a type of innate prokaryotic immune system. Composed of a cyclic GMP-AMP synthase (cGAS) and CBASS-associated proteins, CBASS uses cyclic oligonucleotides to activate antiviral immunity. One major class of CBASS contains a homologue of eukaryotic ubiquitin-conjugating enzymes, which is either an E1-E2 fusion or a single E2. However, the functions of single E2s in CBASS remain elusive. Here, using biochemical, genetic, cryo-electron microscopy and mass spectrometry investigations, we discover that the E2 enzyme from Serratia marcescens regulates cGAS by imitating the ubiquitination cascade. This includes the processing of the cGAS C terminus, conjugation of cGAS to a cysteine residue, ligation of cGAS to a lysine residue, cleavage of the isopeptide bond and poly-cGASylation. The poly-cGASylation activates cGAS to produce cGAMP, which acts as an antiviral signal and leads to cell death. Thus, our findings reveal a unique regulatory role of E2 in CBASS.

14.
Ren Fail ; 46(1): 2344658, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38644359

ABSTRACT

Previous studies have highlighted the significant role of complement activation in kidney injuries induced by rhabdomyolysis, intravascular hemolysis, sepsis, and ischemia-reperfusion. Nevertheless, the specific role and mechanism of complement activation in acute kidney injury (AKI) caused by wasp venom remain unclear. The aim of this study was to elucidate the specific complement pathway activated and investigate complement activation in AKI induced by wasp venom. In this study, a complement-depleted mouse model was used to investigate the role of complement in wasp venom-induced AKI. Mice were randomly categorized into control, cobra venom factor (CVF), AKI, and CVF + AKI groups. Compared to the AKI group, the CVF + AKI group showed improved pathological changes in kidneys and reduced blood urea nitrogen (BUN) levels. The expression levels of renal complement 3 (C3), complement 5 (C5), complement 1q (C1q), factor B (FB), mannose-binding lectin (MBL), and C5b-9 in AKI group were upregulated compared with the control group. Conversely, the renal tissue expression levels of C3, C5, C1q, FB, MBL, and C5b-9 were decreased in the CVF + AKI group compared to those in the AKI group. Complement activation occurs through all three pathways in AKI induced by wasp venom. Furthermore, complement depletion by CVF attenuates wasp venom-induced nephrotoxicity, suggesting that complement activation plays a primary role in the pathogenesis of wasp venom-induced AKI.


Subject(s)
Acute Kidney Injury , Complement Activation , Disease Models, Animal , Wasp Venoms , Animals , Acute Kidney Injury/immunology , Acute Kidney Injury/metabolism , Acute Kidney Injury/etiology , Acute Kidney Injury/chemically induced , Mice , Wasp Venoms/immunology , Wasp Venoms/adverse effects , Male , Kidney/pathology , Elapid Venoms , Blood Urea Nitrogen , Complement C3/metabolism , Complement System Proteins/metabolism
15.
Opt Lett ; 49(7): 1774-1777, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38560860

ABSTRACT

An ultra-broadband TM-pass polarizer is designed, fabricated, and experimentally demonstrated based on subwavelength grating (SWG) metamaterials in a lithium niobate on an insulator (LNOI) platform. According to our simulation, the designed device is predicted to work at a 220 nm wavelength range from 1460 to 1680 nm, covering the S-, C-, L-, U-bands of optical fiber communication. By depositing and subsequently etching a silicon nitride thin film atop the LNOI chip, the SWG structures are formed successfully by using complementary metal-oxide semiconductor (CMOS)-compatible fabrication processes. The measured results show a high polarization extinction ratio larger than 20 dB and a relatively low insertion loss below 2.5 dB over a 130 nm wavelength range from 1500 to 1630 nm, mainly limited by the operation bandwidth of our laser source.

16.
Nature ; 629(8011): 467-473, 2024 May.
Article in English | MEDLINE | ID: mdl-38471529

ABSTRACT

Prokaryotes have evolved intricate innate immune systems against phage infection1-7. Gabija is a highly widespread prokaryotic defence system that consists of two components, GajA and GajB8. GajA functions as a DNA endonuclease that is inactive in the presence of ATP9. Here, to explore how the Gabija system is activated for anti-phage defence, we report its cryo-electron microscopy structures in five states, including apo GajA, GajA in complex with DNA, GajA bound by ATP, apo GajA-GajB, and GajA-GajB in complex with ATP and Mg2+. GajA is a rhombus-shaped tetramer with its ATPase domain clustered at the centre and the topoisomerase-primase (Toprim) domain located peripherally. ATP binding at the ATPase domain stabilizes the insertion region within the ATPase domain, keeping the Toprim domain in a closed state. Upon ATP depletion by phages, the Toprim domain opens to bind and cleave the DNA substrate. GajB, which docks on GajA, is activated by the cleaved DNA, ultimately leading to prokaryotic cell death. Our study presents a mechanistic landscape of Gabija activation.


Subject(s)
Bacillus cereus , Bacterial Proteins , Bacteriophages , Cryoelectron Microscopy , Immunity, Innate , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/ultrastructure , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Apoproteins/chemistry , Apoproteins/immunology , Apoproteins/metabolism , Apoproteins/ultrastructure , Bacterial Proteins/chemistry , Bacterial Proteins/immunology , Bacterial Proteins/metabolism , Bacterial Proteins/ultrastructure , Bacteriophages/immunology , DNA/metabolism , DNA/chemistry , DNA Cleavage , Magnesium/chemistry , Magnesium/metabolism , Models, Molecular , Protein Binding , Protein Domains , Microbial Viability , Bacillus cereus/chemistry , Bacillus cereus/immunology , Bacillus cereus/metabolism , Bacillus cereus/ultrastructure , Protein Structure, Quaternary , DNA Primase/chemistry , DNA Primase/metabolism , DNA Primase/ultrastructure , DNA Topoisomerases/chemistry , DNA Topoisomerases/metabolism , DNA Topoisomerases/ultrastructure
17.
BMC Pediatr ; 24(1): 172, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38459440

ABSTRACT

BACKGROUND: Necrotizing enterocolitis (NEC) is a serious gastrointestinal disease, primarily affects preterm newborns and occurs after 7 days of life (late-onset NEC, LO-NEC). Unfortunately, over the past several decades, not much progress has been made in its treatment or prevention. This study aimed to analyze the risk factors for LO-NEC, and the impact of LO-NEC on short-term outcomes in very preterm infants (VPIs) with a focus on nutrition and different onset times. METHOD: Clinical data of VPIs were retrospectively collected from 28 hospitals in seven different regions of China from September 2019 to December 2020. A total of 2509 enrolled VPIs were divided into 2 groups: the LO-NEC group and non-LO-NEC group. The LO-NEC group was divided into 2 subgroups based on the onset time: LO-NEC occurring between 8 ~ 14d group and LO-NEC occurring after 14d group. Clinical characteristics, nutritional status, and the short-term clinical outcomes were analyzed and compared among these groups. RESULTS: Compared with the non-LO-NEC group, the LO-NEC group had a higher proportion of anemia, blood transfusion, and invasive mechanical ventilation (IMV) treatments before NEC; the LO-NEC group infants had a longer fasting time, required longer duration to achieve the target total caloric intake (110 kcal/kg) and regain birthweight, and showed slower weight growth velocity; the cumulative dose of the medium-chain and long-chain triglyceride (MCT/LCT) emulsion intake in the first week after birth was higher and breastfeeding rate was lower. Additionally, similar results including a higher proportion of IMV, lower breastfeeding rate, more MCT/LCT emulsion intake, slower growth velocity were also found in the LO-NEC group occurring between 8 ~ 14d when compared to the LO-NEC group occurring after 14 d (all (P < 0.05). After adjustment for the confounding factors, high proportion of breastfeeding were identified as protective factors and long fasting time before NEC were identified as risk factors for LO-NEC; early feeding were identified as protective factors and low gestational age, grade III ~ IV neonatal respiratory distress syndrome (NRDS), high accumulation of the MCT/LCT emulsion in the first week were identified as risk factors for LO-NEC occurring between 8 ~ 14d. Logistic regression analysis showed that LO-NEC was a risk factor for late-onset sepsis, parenteral nutrition-associated cholestasis, metabolic bone disease of prematurity, and extrauterine growth retardation. CONCLUSION: Actively preventing premature birth, standardizing the treatment of grade III ~ IV NRDS, and optimizing enteral and parenteral nutrition strategies may help reduce the risk of LO-NEC, especially those occurring between 8 ~ 14d, which may further ameliorate the short-term clinical outcome of VPIs. TRIAL REGISTRATION: ChiCTR1900023418 (26/05/2019).


Subject(s)
Enterocolitis, Necrotizing , Infant, Premature, Diseases , Respiratory Distress Syndrome, Newborn , Female , Infant, Newborn , Humans , Infant, Premature , Nutritional Status , Enterocolitis, Necrotizing/epidemiology , Enterocolitis, Necrotizing/etiology , Enterocolitis, Necrotizing/prevention & control , Emulsions , Retrospective Studies , Infant, Premature, Diseases/epidemiology , Infant, Premature, Diseases/etiology , Infant, Premature, Diseases/prevention & control , Risk Factors
18.
Cancer Res ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38536129

ABSTRACT

T cells recognize tumor antigens and initiate an anti-cancer immune response in the very early stages of tumor development, and the antigen specificity of T cells is determined by the T cell receptor (TCR). Therefore, monitoring changes in the TCR repertoire in peripheral blood may offer a strategy to detect various cancers at a relatively early stages. Here, we developed the deep learning framework iCanTCR to identify cancer patients based on the TCR repertoire. The iCanTCR framework uses TCRß sequences from an individual as an input and outputs the predicted cancer probability. The model was trained on over 2000 publicly available TCR repertoires from eleven types of cancer and healthy controls. Analysis of several additional publicly available datasets validated the ability of iCanTCR to distinguish cancer patients from non-cancer individuals and demonstrated the capability of iCanTCR for the accurate classification of multiple cancers. Importantly, iCanTCR precisely identified individuals with early-stage cancer with an area under the curve (AUC) of 86%. Altogether, this work provides a liquid biopsy approach to capture immune signals from peripheral blood for non-invasive cancer diagnosis.

19.
Inflamm Regen ; 44(1): 16, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38539268

ABSTRACT

Bronchopulmonary dysplasia (BPD) is a chronic lung disease characterized by retarded alveolarization. Tenascin-C (TN-C), an extracellular matrix glycoprotein and soluble molecule, is involved in tissue morphogenesis. In the present study, we demonstrated that the level of TN-C in lung tissues was greater in a mouse model of BPD induced by 85% oxygen. TN-C deficiency, however, impaired alveolarization in the hyperoxia-induced BPD model. In contrast, a functional TN-C blocking antibody ameliorated alveolar dysplasia in BPD-like mice. Mechanistically, hyperoxia increased the soluble TN-C (sTN-C) released from respiratory epithelial cells. On one hand, low-dose sTN-C promoted lung epithelial cell proliferation and migration, which was mediated by ICAM-1. On the other hand, high-dose sTN-C hindered the proliferation and migration of epithelial cells. Overall, this study revealed that TN-C plays a dual role in lung alveolarization and that TN-C may be a target in BPD therapy.

20.
Arch Biochem Biophys ; 754: 109962, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38499055

ABSTRACT

Acetohydroxyacid synthase (AHAS) is one of the key enzymes of the biosynthesis of branched-chain amino acids, it is also an effective target for the screening of herbicides and antibiotics. In this study we present a method for preparing Escherichia coli AHAS I holoenzyme (EcAHAS I) with exceptional stability, which provides a solid ground for us to re-investigate the in vitro catalytic properties of the protein. The results show EcAHAS I synthesized in this way exhibits similar function to Bacillus subtilis acetolactate synthase in its catalysis with pyruvate and 2-ketobutyrate (2-KB) as dual-substrate, producing four 2-hydroxy-3-ketoacids including (S)-2-acetolactate, (S)-2-aceto-2-hydroxybutyrate, (S)-2-propionyllactate, and (S)-2-propionyl-2-hydroxybutyrate. Quantification of the reaction indicates that the two substrates almost totally consume, and compound (S)-2-aceto-2- hydroxybutyrate forms in the highest yield among the four major products. Moreover, the protein also condenses two molecules of 2-KB to furnish (S)-2-propionyl-2-hydroxybutyrate. Further exploration manifests that EcAHAS I ligates pyruvate/2-KB and nitrosobenzene to generate two arylhydroxamic acids N-hydroxy-N-phenylacetamide and N-hydroxy-N-phenyl- propionamide. These findings enhance our comprehension of the catalytic characteristics of EcAHAS I. Furthermore, the application of this enzyme as a catalyst in construction of C-N bonds displays promising potential.


Subject(s)
Acetolactate Synthase , Escherichia coli , Acetolactate Synthase/chemistry , Glycogen Synthase , Hydroxybutyrates , Pyruvates , Holoenzymes
SELECTION OF CITATIONS
SEARCH DETAIL
...