Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Plant Biol ; 23(1): 70, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36726056

ABSTRACT

The subgenus Rhizirideum in the genus Allium consists of 38 species worldwide and forms five sections (A. sect. Rhizomatosa, A. sect. Tenuissima, A. sect. Rhizirideum, A. sect. Eduardia, and A. sect. Caespitosoprason), A. sect. Caespitosoprason being merged into A. sect. Rhizomatosa recently. Previous studies on this subgenus mainly focused on separate sections. To investigate the inter-section and inter-subgenera phylogenetic relationships and adaptive evolution of A. subg. Rhizirideum, we selected thirteen representative species, which cover five sections of this subgenus and can represent four typical phenotypes of it. We conducted the comparative plastome analysis with our thirteen plastomes. And phylogenetic inferences with CDSs and complete sequences of plastomes of our thirteen species and another fifty-four related species were also performed. As a result, the A. subg. Rhizirideum plastomes were relatively conservative in structure, IR/SC borders, codon usage, and repeat sequence. In phylogenetic results, the inter-subgenera relationships among A. subg. Rhizirideum and other genus Allium subgenera were generally similar to the previous reports. In contrast, the inter-section relationships within our subgenus A. subg. Rhizirideum were newly resolved in this study. A. sect. Rhizomatosa and A. sect. Tenuissima were sister branches, which were then clustered with A. sect. Rhizirideum and A. sect. Eduardia successively. However, Allium Polyrhizum Turcz. ex Regel, type species of A. sect. Caespitosoprason, was resolved as the basal taxon of A. subg. Rhizirideum. Allium siphonanthum J. M. Xu was also found in clade A. subg. Cyathophora instead of clade A. subg. Rhizirideum. The selective pressure analysis was also conducted, and most protein-coding genes were under purifying selection. At the same time, just one gene, ycf2, was found under positive selection, and another three genes (rbcL, ycf1a, ycf1b) presented relaxed selection, which were all involved in the photosynthesis. The low temperature, dry climate, and high altitude of the extreme habitats where A. subg. Rhizirideum species grow might impose intense natural selection forces on their plastome genes for photosynthesis. In summary, our research provides new insights into the phylogeny and adaptive evolution of A. subg. Rhizirideum. Moreover, we suggest that the positions of the A. subg. Rhizirideum species A. polyrhizum and A. siphonanthum should be reconsidered.


Subject(s)
Allium , Amaryllidaceae , Genome, Plastid , Allium/genetics , Amaryllidaceae/genetics , Phylogeny , Repetitive Sequences, Nucleic Acid , Evolution, Molecular
2.
PhytoKeys ; 190: 53-67, 2022.
Article in English | MEDLINE | ID: mdl-35437376

ABSTRACT

Alliumheterophyllum D.F.Xie & X.J.He, sp. nov. (Amaryllidaceae), is a new species from Henan, China and is described based on morphological and molecular evidence. It is morphologically most similar to A.dumebuchum in the rhomboid scape in cross-section. However, distinctive differences were detected in perianth color, leaf shape and cross-section, flowers' density as well as flowering season. Similarly, the karyotype of A.heterophyllum is 2n = 2x = 16 and in A.dumebuchum is 2n = 4x = 32. Phylogenetic analysis based on nuclear ribosomal Internal Transcribed Spacers (ITS) and three cpDNA regions strongly supports that A.heterophyllum is a member of Allium section Rhizirideum and sister to the other species of this section (e.g. A.senescens, A.spirale, and A.prostratum). Currently, only one population and approximately 120 individuals were discovered; the development of scenic spots in this region may affect its growth and threaten this population. Therefore, this new species is preliminarily considered as Near Threatened (NT) according to criteria of the IUCN Red List.

3.
Biomed Res Int ; 2022: 3909596, 2022.
Article in English | MEDLINE | ID: mdl-35372568

ABSTRACT

In the latest APG IV classification system, Amaryllidaceae is placed under the order of Asparagus and includes three subfamilies: Agapanthoideae, Allioideae, and Amaryllidoideae, which include many economically important crops. With the development of molecular phylogeny, research on the phylogenetic relationship of Amaryllidaceae has become more convenient. However, the current comparative analysis of Amaryllidaceae at the whole chloroplast genome level is still lacking. In this study, we sequenced 18 Allioideae plastomes and combined them with publicly available data (a total of 41 plastomes), including 21 Allioideae species, 1 Agapanthoideae species, 14 Amaryllidoideae species, and 5 Asparagaceae species. Comparative analyses were performed including basic characteristics of genome structure, codon usage, repeat elements, IR boundary, and genome divergence. Phylogenetic relationships were detected using single-copy genes (SCGs) and ribosomal internal transcribed spacer sequences (ITS), and the branch-site model was also employed to conduct the positive selection analysis. The results indicated that all Amaryllidaceae species showed a highly conserved typical tetrad structure. The GC content and five codon usage indexes in Allioideae species were lower than those in the other two subfamilies. Comparison analysis of Bayesian and ML phylogeny based on SCGs strongly supports the monophyly of three subfamilies and the sisterhood among them. Besides, positively selected genes (PSGs) were detected in each of the three subfamilies. Almost all genes with significant posterior probabilities for codon sites were associated with self-replication and photosynthesis. Our study investigated the three subfamilies of Amaryllidaceae at the whole chloroplast genome level and suggested the key role of selective pressure in the adaptation and evolution of Amaryllidaceae.


Subject(s)
Amaryllidaceae , Genome, Chloroplast , Amaryllidaceae/genetics , Bayes Theorem , Evolution, Molecular , Genome, Chloroplast/genetics , Phylogeny
4.
Front Plant Sci ; 12: 667988, 2021.
Article in English | MEDLINE | ID: mdl-34177982

ABSTRACT

The karst environment is characterized by low soil water content, periodic water deficiency, and poor nutrient availability, which provides an ideal natural laboratory for studying the adaptive evolution of its inhabitants. However, how species adapt to such a special karst environment remains poorly understood. Here, transcriptome sequences of two Urophysa species (Urophysa rockii and Urophysa henryi), which are Chinese endemics with karst-specific distribution, and allied species in Semiaquilegia and Aquilegia (living in non-karst habitat) were collected. Single-copy genes (SCGs) were extracted to perform the phylogenetic analysis using concatenation and coalescent methods. Positively selected genes (PSGs) and clusters of paralogous genes (Mul_genes) were detected and subsequently used to conduct gene function annotation. We filtered 2,271 SCGs and the coalescent analysis revealed that 1,930 SCGs shared the same tree topology, which was consistent with the topology detected from the concatenated tree. Total of 335 PSGs and 243 Mul_genes were detected, and many were enriched in stress and stimulus resistance, transmembrane transport, cellular ion homeostasis, calcium ion transport, calcium signaling regulation, and water retention. Both molecular and morphological evidences indicated that Urophysa species evolved complex strategies for adapting to hostile karst environments. Our findings will contribute to a new understanding of genetic and phenotypic adaptive mechanisms of karst adaptation in plants.

SELECTION OF CITATIONS
SEARCH DETAIL
...