Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Theor Appl Genet ; 137(6): 119, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709271

ABSTRACT

KEY MESSAGE: A candidate gene TaSP1 related to spike shape was cloned, and the gene-specific marker was developed to efficiently track the superior haplotype in common wheat. Spike shape, an important factor that affects wheat grain yield, is mainly defined by spike length (SPL), spikelet number (SPN), and compactness. Zhoumai32 mutant 1160 (ZM1160), a mutant obtained from ethyl methane sulfonate (EMS) treatment of hexaploid wheat variety Zhoumai32, was used to identify and clone the candidate gene that conditioned the spike shape. Genetic analysis of an F2 population derived from a cross of ZM1160 and Bainong207 suggested that the compact spike shape in ZM1160 was controlled by a single recessive gene, and therefore, the mutated gene was designated as Tasp1. With polymorphic markers identified through bulked segregant analysis (BSA), the gene was mapped to a 2.65-cM interval flanked by markers YZU0852 and MIS46239 on chromosome 7D, corresponding to a 0.42-Mb physical interval of Chinese spring (CS) reference sequences (RefSeq v1.0). To fine map TaSP1, 15 and seven recombinants were, respectively, screened from 1599 and 1903 F3 plants derived from the heterozygous F2 plants. Finally, TaSP1 was delimited to a 21.9 Kb (4,870,562 to 4,892,493 bp) Xmis48123-Xmis48104 interval. Only one high-confidence gene TraesCS7D02G010200 was annotated in this region, which encodes an unknown protein with a putative vWA domain. Quantitative reverse transcription PCR (qRT-PCR) analysis showed that TraesCS7D02G010200 was mainly expressed in the spike. Haplotype analysis of 655 wheat cultivars using the candidate gene-specific marker Xg010200p2 identified a superior haplotype TaSP1b with longer spike and more spikelet number. TaSP1 is beneficial to the improvement in wheat spike shape.


Subject(s)
Cloning, Molecular , Mutation , Triticum , Chromosome Mapping/methods , Chromosomes, Plant/genetics , Ethyl Methanesulfonate , Genes, Plant , Genetic Markers , Haplotypes , Phenotype , Triticum/genetics , Triticum/growth & development
2.
Theor Appl Genet ; 136(5): 110, 2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37039971

ABSTRACT

KEY MESSAGE: KLW1 was localized to a 0.6 cM interval near the centromere of chromosome 4B and found to be dominant in conditioning longer kernels and higher kernel weight. Kernel weight is a major wheat yield component and affected by kernel dimensions, filling process and kernel density. Because of this complexity, the mechanism underlying kernel weight is still far from clear. Qtgw.nau-4B or KLW1 was a major kernel weight QTL identified in the Nanda2419 × Wangshuibai population. We showed that introduction of the Nanda2419 allele into elite cultivar Wenmai6 resulted in longer kernels as well as higher kernel weight, without affecting other traits such as spike number per plant, plant height, spike length, spikelet number per spike, and kernel number per spike. KLW1 was dominant in conditioning higher kernel weight and functioned mainly through affecting kernel length. Using F2 plants derived from KLW1 NIL, a high-density genetic map covering the QTL was constructed. KLW1 was consequently confined to the 0.6 cM Xwgrc4219-Xwgrc4067 interval by evaluating the recombinant lines in three field trials. KLW1 is complementary to KT1, the QTL on chromosome 5A of Nanda2419 for thicker and heavier kernels, in producing larger kernels with higher commercial value, augmenting its usefulness in wheat breeding.


Subject(s)
Quantitative Trait Loci , Triticum , Chromosome Mapping/methods , Triticum/genetics , Plant Breeding , Chromosomes, Plant
3.
Theor Appl Genet ; 135(3): 1101-1111, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35083509

ABSTRACT

KEY MESSAGE: KT1 was validated as a novel thickness QTL with major effects on wheat kernel dimensions and weight and fine mapped to a 0.04 cM interval near the chromosome-5A centromere. Kernel size, the principal grain weight determining factor of wheat and a target trait for both domestication and artificial breeding, is mainly defined by kernel length (KL), kernel width (KW) and kernel thickness (KT), of which KW and KT have been shown to be positively related to grain weight (GW). Qkt.nau-5A, a major QTL for KT, was validated using the QTL near-isogenic lines (NILs) in three genetic backgrounds. Genetic analysis using two F2 populations derived from the NILs showed that Qkt.nau-5A was dominant for thicker kernel and inherited like a single gene and therefore was designated as Kernel Thickness 1 (KT1). With 77 recombinant lines identified from a total of 19,160 F2 plants from the two NIL-derived F2 populations, KT1 was mapped to the 0.04 cM Xwgrb1356-Xwgrb1619 interval, which was near the centromere and displayed strong recombination suppression. The KT1 interval showed positive correlation with KW and GW and negative correlation with KL and therefore could be used in breeding for cultivars with round-shaped kernels that are beneficial to higher flour yield. KT1 candidate identification could be achieved through combination of sequence variation analysis with expression profiling of the annotated genes in the interval.


Subject(s)
Chromosomes, Plant , Triticum , Chromosome Mapping/methods , Chromosomes, Plant/genetics , Edible Grain/genetics , Phenotype , Plant Breeding , Quantitative Trait Loci , Seeds/genetics , Triticum/genetics
4.
Theor Appl Genet ; 130(7): 1405-1414, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28526913

ABSTRACT

KEY MESSAGE: Seven kernel dimension QTLs were identified in wheat, and kernel thickness was found to be the most important dimension for grain weight improvement. Kernel morphology and weight of wheat (Triticum aestivum L.) affect both yield and quality; however, the genetic basis of these traits and their interactions has not been fully understood. In this study, to investigate the genetic factors affecting kernel morphology and the association of kernel morphology traits with kernel weight, kernel length (KL), width (KW) and thickness (KT) were evaluated, together with hundred-grain weight (HGW), in a recombinant inbred line population derived from Nanda2419 × Wangshuibai, with data from five trials (two different locations over 3 years). The results showed that HGW was more closely correlated with KT and KW than with KL. A whole genome scan revealed four QTLs for KL, one for KW and two for KT, distributed on five different chromosomes. Of them, QKl.nau-2D for KL, and QKt.nau-4B and QKt.nau-5A for KT were newly identified major QTLs for the respective traits, explaining up to 32.6 and 41.5% of the phenotypic variations, respectively. Increase of KW and KT and reduction of KL/KT and KW/KT ratios always resulted in significant higher grain weight. Lines combining the Nanda 2419 alleles of the 4B and 5A intervals had wider, thicker, rounder kernels and a 14% higher grain weight in the genotype-based analysis. A strong, negative linear relationship of the KW/KT ratio with grain weight was observed. It thus appears that kernel thickness is the most important kernel dimension factor in wheat improvement for higher yield. Mapping and marker identification of the kernel dimension-related QTLs definitely help realize the breeding goals.


Subject(s)
Chromosome Mapping , Quantitative Trait Loci , Seeds/genetics , Triticum/genetics , Alleles , Chromosomes, Plant/genetics , Genotype , Phenotype , Plant Breeding
5.
Theor Appl Genet ; 128(12): 2437-45, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26334548

ABSTRACT

KEY MESSAGE: The QGw.nau - 2D, QGw.nau - 4B and QGw.nau - 5A intervals were investigated for their effects on weight, length, width, and thickness of kernels and their differential roles in determining kernel size and shape were demonstrated. Grain weight (GW) contributes greatly to wheat yield and is directly related to kernel size and shape. Although over 100 quantitative trait loci (QTLs) for GW have been reported in the literatures, few have been well characterized for their association with kernel traits. In this study, three GW QTLs identified in elite cultivar 'Nanda2419' ('Mentana'), including QGw.nau-2D, QGw.nau-4B and QGw.nau-5A, were investigated through near isogenic line (NIL) development and evaluation. NILs for all three QTLs and one NIL with both QGw.nau-4B and QGw.nau-5A were developed with the help of marker-assisted selection after two to three generations of backcross using cultivar 'Wangshuibai' as the recurrent parent. One NIL with QGw.nau-4B in the background of cultivar 'Wenmai6' was also obtained. In four different field trials, these NILs consistently produced heavier kernels than the recurrent parents. QGw.nau-4B showed the largest effect on GW; its presence resulted in 0.4-0.5 g increase of hundred-grain weight, depending on genetic backgrounds. QGw.nau-4B and QGw.nau-5A functioned additively in conditioning GW. These three QTL intervals showed pleiotropic effects on, or close linkage with genes for, spike length, plant height and flag leaf width, respectively, and acted differentially in determining the kernel dimensions that are the major GW determinants. They all conditioned wider kernels with QGw.nau-5A displaying the largest effect. QGw.nau-4B and QGw.nau-5A also conditioned thicker kernels but had opposite effects on kernel length. This study demonstrated that marker-assisted selection is effective for GW improvement. The availability of GW NILs could facilitate cloning of GW genes and unraveling of kernel development mechanisms.


Subject(s)
Quantitative Trait Loci , Seeds/anatomy & histology , Triticum/genetics , Crosses, Genetic , Genes, Plant , Genotype , Phenotype , Plant Breeding , Selection, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...