Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
mSystems ; 9(7): e0051324, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38904399

ABSTRACT

Mixotrophy is an important trophic strategy for bacterial survival in the ocean. However, the global relevance and identity of the major mixotrophic taxa remain largely elusive. Here, we combined phylogenetic, metagenomic, and metatranscriptomic analyses to characterize ubiquitous Arcobacteraceae based on our deep-sea in situ incubations and the global data. The phylogenomic tree of Arcobacteraceae is divided into three large clades, among which members of clades A and B are almost all from terrestrial environments, while those of clade C are widely distributed in various marine habitats in addition to some terrestrial origins. All clades harbor genes putatively involved in chitin degradation, sulfide oxidation, hydrogen oxidation, thiosulfate oxidation, denitrification, dissimilatory nitrate reduction to ammonium, microaerophilic respiration, and metal (iron/manganese) reduction. Additionally, in clade C, more unique pathways were retrieved, including thiosulfate disproportionation, ethanol fermentation, methane oxidation, fatty acid oxidation, cobalamin synthesis, and dissimilatory reductions of sulfate, perchlorate, and arsenate. Within this clade, two mixotrophic Candidatus genera represented by UBA6211 and CAIJNA01 harbor genes putatively involved in the reverse tricarboxylic acid pathway for carbon fixation. Moreover, the metatranscriptomic data in deep-sea in situ incubations indicated that the latter genus is a mixotroph that conducts carbon fixation by coupling sulfur oxidation and denitrification and metabolizing organic matter. Furthermore, global metatranscriptomic data confirmed the ubiquitous distribution and global relevance of Arcobacteraceae in the expression of those corresponding genes across all oceanic regions and depths. Overall, these results highlight the contribution of previously unrecognized Arcobacteraceae to carbon, nitrogen, and sulfur cycling in global oceans.IMPORTANCEMarine microorganisms exert a profound influence on global carbon cycling and ecological relationships. Mixotrophy, characterized by the simultaneous utilization of both autotrophic and heterotrophic nutrition, has a significant impact on the global carbon cycling. This report characterizes a group of uncultivated bacteria Arcobacteraceae that thrived on the "hot time" of bulky particulate organic matter and exhibited mixotrophic strategy during the in situ organic mineralization. Compared with clades A and B, more unique metabolic pathways were retrieved in clade C, including the reverse tricarboxylic acid pathway for carbon fixation, thiosulfate disproportionation, methane oxidation, and fatty acid oxidation. Global metatranscriptomic data from the Tara Oceans expeditions confirmed the ubiquitous distribution and extensive transcriptional activity of Arcobacteraceae with the expression of genes putatively involved in carbon fixation, methane oxidation, multiple sulfur compound oxidation, and denitrification across all oceanic regions and depths.


Subject(s)
Carbon , Nitrogen , Oceans and Seas , Sulfur , Sulfur/metabolism , Carbon/metabolism , Nitrogen/metabolism , Phylogeny , Seawater/microbiology
2.
J Colloid Interface Sci ; 669: 506-517, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38723539

ABSTRACT

Graphitic phase carbon nitride (g-C3N5), as a novel n-type metal-free material, is employed as a visible light-receptive catalyst because of its narrow band gap and abundant nitrogen. To overcome the low carrier mobility efficiency of g-C3N5, its modification by K ions was adopted. In addition, In2S3 was selected to couple with modified g-C3N5 to overcome the recombination of photogenerated e-/h+. As a novel photocatalytic material, it was proven to possess a high visible light absorption capacity and a strong H2O2 production ability (up to 3.89 mmol⋅L-1 in 2 h). Moreover, a S-scheme heterojunction structure was successfully constructed between the two materials, which was tested and confirmed to be successful in raising the photogenerated e-/h+ separation efficiency. Ultimately, the primary processes of photocatalytic H2O2 production were summarized by superoxide radical and rotating disc electron measurements. This research provides a fresh perspective for the synthesis of C3N5-based S-scheme heterojunction photocatalysts for producing H2O2.

3.
Nat Commun ; 15(1): 3228, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622147

ABSTRACT

Seamounts are globally distributed across the oceans and form one of the major oceanic biomes. Here, we utilized combined analyses of bulk metagenome and virome to study viral communities in seamount sediments in the western Pacific Ocean. Phylogenetic analyses and the protein-sharing network demonstrate extensive diversity and previously unknown viral clades. Inference of virus-host linkages uncovers extensive interactions between viruses and dominant prokaryote lineages, and suggests that viruses play significant roles in carbon, sulfur, and nitrogen cycling by compensating or augmenting host metabolisms. Moreover, temperate viruses are predicted to be prevalent in seamount sediments, which tend to carry auxiliary metabolic genes for host survivability. Intriguingly, the geographical features of seamounts likely compromise the connectivity of viral communities and thus contribute to the high divergence of viral genetic spaces and populations across seamounts. Altogether, these findings provides knowledge essential for understanding the biogeography and ecological roles of viruses in globally widespread seamounts.


Subject(s)
Viruses , Phylogeny , Oceans and Seas , Ecosystem , Genes, Viral
4.
Microorganisms ; 11(10)2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37894227

ABSTRACT

Thiomicrorhabdus species, belonging to the family Piscirickettsiaceae in the phylum Pseudomonadotav are usually detected in various sulfur-rich marine environments. However, only a few bacteria of Thiomicrorhabdus have been isolated, and their ecological roles and environmental adaptations still require further understanding. Here, we report a novel strain, XGS-01T, isolated from a coastal sediment, which belongs to genus Thiomicrorhabdus and is most closely related to Thiomicrorhabdus hydrogeniphila MAS2T, with a sequence similarity of 97.8%. Phenotypic characterization showed that XGS-01T is a mesophilic, sulfur-oxidizing, obligate chemolithoautotrophy, with carbon dioxide as its sole carbon source and oxygen as its sole electron acceptor. During thiosulfate oxidation, strain XGS-01T can produce extracellular sulfur of elemental α-S8, as confirmed via scanning electron microscopy and Raman spectromicroscopy. Polyphasic taxonomy results indicate that strain XGS-01T represents a novel species of the genus Thiomicrorhabdus, named Thiomicrorhabdus lithotrophica sp. nov. Genomic analysis confirmed that XGS-01T performed thiosulfate oxidation through a sox multienzyme complex, and harbored fcc and sqr genes for sulfide oxidation. Comparative genomics analysis among five available genomes from Thiomicrorhabdus species revealed that carbon fixation via the oxidation of reduced-sulfur compounds coupled with oxygen reduction is conserved metabolic pathways among members of genus Thiomicrorhabdus.

5.
Small ; 19(48): e2303813, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37507829

ABSTRACT

In the present work, using one-step calcination of a mixture made of potassium hydroxide (KOH), melamine, and microplastics, this work prepares a novel graphitic carbon nitride/carbon (g-C3 N4 /C) composite, which can be employed to photo-catalytically produce hydrogen peroxide (H2 O2 ) at a high rate up to 6.146 mmol g-1 h-1 under visible light irradiation. By analyzing the energy band structure of the catalyst, the production of H2 O2 in this system consists of two single-electron reactions. The modification of KOH makes abundant N-vacancies caused by cyano-groups in g-C3 N4 , enhancing the electron absorption ability. Moreover, the introduction of graphitic carbon increases its specific surface area and porosity and improves the adsorption ability of O2 . Simultaneously, their synergism reduces the g-C3 N4 band gap, making both the conduction-band and valence-band positions more negative, showing enhanced reduction ability, lowering the energy barrier for oxygen reduction, and greatly improving the photogeneration performance of H2 O2 .

6.
Microbiome ; 10(1): 235, 2022 12 24.
Article in English | MEDLINE | ID: mdl-36566239

ABSTRACT

BACKGROUND: The deep sea harbors many viruses, yet their diversity and interactions with hosts in hydrothermal ecosystems are largely unknown. Here, we analyzed the viral composition, distribution, host preference, and metabolic potential in different habitats of global hydrothermal vents, including vent plumes, background seawater, diffuse fluids, and sediments. RESULTS: From 34 samples collected at eight vent sites, a total of 4662 viral populations (vOTUs) were recovered from the metagenome assemblies, encompassing diverse phylogenetic groups and defining many novel lineages. Apart from the abundant unclassified viruses, tailed phages are most predominant across the global hydrothermal vents, while single-stranded DNA viruses, including Microviridae and small eukaryotic viruses, also constitute a significant part of the viromes. As revealed by protein-sharing network analysis, hydrothermal vent viruses formed many novel genus-level viral clusters and are highly endemic to specific vent sites and habitat types. Only 11% of the vOTUs can be linked to hosts, which are the key microbial taxa of hydrothermal habitats, such as Gammaproteobacteria and Campylobacterota. Intriguingly, vent viromes share some common metabolic features in that they encode auxiliary genes that are extensively involved in the metabolism of carbohydrates, amino acids, cofactors, and vitamins. Specifically, in plume viruses, various auxiliary genes related to methane, nitrogen, and sulfur metabolism were observed, indicating their contribution to host energy conservation. Moreover, the prevalence of sulfur-relay pathway genes indicated the significant role of vent viruses in stabilizing the tRNA structure, which promotes host adaptation to steep environmental gradients. CONCLUSIONS: The deep-sea hydrothermal systems hold untapped viral diversity with novelty. They may affect both vent prokaryotic and eukaryotic communities and modulate host metabolism related to vent adaptability. More explorations are needed to depict global vent virus diversity and its roles in this unique ecosystem. Video Abstract.


Subject(s)
Hydrothermal Vents , Viruses , Ecosystem , Phylogeny , Hydrothermal Vents/microbiology , Viruses/genetics , Viruses/metabolism , Sulfur/metabolism
7.
Food Environ Virol ; 13(3): 423-431, 2021 09.
Article in English | MEDLINE | ID: mdl-33837925

ABSTRACT

Dicistroviruses are members of a rapidly growing family of small RNA viruses. Related sequences have been discovered in many environmental samples, indicating that our knowledge about dicistrovirus diversity and host range is still limited. In this study, we performed a systematic search against the publicly available transcriptome database, and identified large numbers of dicistrovirus-like sequences in a wide variety of eukaryotic species. The origins of these sequences were 108 invertebrates (including 77 insect species belonging to 18 orders) and 11 plants, revealing new associations between dicistroviruses and hosts. Finally, 83 transcripts corresponding to nearly-complete viral genomes were retrieved from the RNA-seq data, of which most sequences showed limited similarity to known dicistroviruses and might present previously unreported virus species. Phylogenetic analysis suggested that horizontal virus transfer has occurred between diverse hosts and has important implications for dicistrovirus evolution. The results will provide new insight into the hidden diversity of the Dicistroviridae, and help us to better understand the viral evolution, host range and the possible way of transmission.


Subject(s)
Dicistroviridae , RNA Viruses , Animals , Dicistroviridae/genetics , Genome, Viral/genetics , Invertebrates , Phylogeny , RNA Viruses/genetics
8.
ACS Omega ; 5(38): 24495-24503, 2020 Sep 29.
Article in English | MEDLINE | ID: mdl-33015466

ABSTRACT

CsPbBr3 perovskite-based composites so far have been synthesized by postdeposition of CsPbBr3 on a parent material. However, in situ construction offers enhanced surface contact, better activity, and improved stability. Instead of applying a typical thermal condensation at highly elevated temperatures, we report for the first time CsPb(Br x Cl1-x )3/graphitic-C3N4 (CsPbX3/g-C3N4) composites synthesized by a simple and mild solvothermal route, with enhanced efficacy in visible-light-driven photocatalytic CO2 reduction. The composite exhibited a CO production rate of 28.5 µmol g-1 h-1 at an optimized loading amount of g-C3N4. This rate is about five times those of pure g-C3N4 and CsPbBr3. This work reports a new in situ approach for constructing perovskite-based heterostructure photocatalysts with enhanced light-harvesting ability and improved solar energy conversion efficiency.

9.
Genome Biol Evol ; 12(5): 578-588, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32282886

ABSTRACT

Endogenous viral elements (EVEs), derived from all major types of viruses, have been discovered in many eukaryotic genomes, representing "fossil records" of past viral infections. The endogenization of nudiviruses has been reported in several insects, leading to the question of whether genomic integration is a common phenomenon for these viruses. In this study, genomic assemblies of insects and other arthropods were analyzed to identify endogenous sequences related to Nudiviridae. A total of 359 nudivirus-like genes were identified in 43 species belonging to different groups; however, none of these genes were detected in the known hosts of nudiviruses. A large proportion of the putative EVEs identified in this study encode intact open reading frames or are transcribed as mRNAs, suggesting that they result from recent endogenization of nudiviruses. Phylogenetic analyses of the identified EVEs and inspections of their flanking regions indicated that integration of nudiviruses has occurred recurrently during the evolution of arthropods. This is the first report of a comprehensive screening for nudivirus-derived EVEs in arthropod genomes. The results of this study demonstrated that a large variety of arthropods, especially hemipteran and hymenopteran insects, have previously been or are still infected by nudiviruses. These findings have greatly extended the host range of Nudiviridae and provide new insights into viral diversity, evolution, and host-virus interactions.


Subject(s)
Arthropods/genetics , Arthropods/virology , Genome, Insect , Nudiviridae/physiology , Virus Physiological Phenomena , Animals , Evolution, Molecular , Host-Pathogen Interactions
10.
Nanoscale ; 9(44): 17593-17600, 2017 Nov 16.
Article in English | MEDLINE | ID: mdl-29114692

ABSTRACT

Porous activated carbons (PACs) are promising candidates to capture CO2 through physical adsorption because of their chemical stability, easy-synthesis, cost-effectiveness and good recyclability. However, their low CO2 adsorption capacity, especially low CO2/N2 selectivity, has limited their practical applications. In this work, an optimized PAC with a large specific surface area, a small micropore size, and a large micropore volume has been synthesized by one-step carbonization/activation of casein using K2CO3 as a mild activation agent. It showed a remarkably enhanced CO2 adsorption capacity as high as 5.78 mmol g-1 and an excellent CO2/N2 selectivity of 144 (25 °C, 1 bar). Based on DFT calculations and experimental results, the coexistence of adjacent pyridinic N and -OH/-NH2 species was proposed for the first time to make an important contribution to the ultra-high CO2 adsorption performance, especially CO2/N2 selectivity. This work provides effective guidance to design PAC adsorbents with high CO2 adsorption performance. The content of pyridine N combined with -OH/-NH2 was further elevated by additional nitrogen introduction, resulting in a further enhanced CO2 adsorption capacity up to 5.96 mmol g-1 (25 °C, 1 bar). All these results suggest that, in addition to the well-defined pore structure, pyridinic N with neighboring OH or NH2 species played an important role in enhancing the CO2 adsorption performance of PACs, thus providing effective guidance for the rational design of CO2 adsorbents.

11.
Mol Ecol ; 26(10): 2726-2737, 2017 May.
Article in English | MEDLINE | ID: mdl-28214356

ABSTRACT

The brown planthopper (Nilaparvata lugens, BPH), white-backed planthopper (Sogatella furcifera, WBPH) and small brown planthopper (Laodelphax striatellus, SBPH) are important rice pests in Asia. These three species differ in thermal tolerance and exhibit quite different migration and overwintering strategies. To understand the underlying mechanisms, we sequenced and compared the transcriptome of the three species under different temperature treatments. We found that metabolism-, exoskeleton- and chemosensory-related genes were modulated. In high temperature (37 °C), heat shock protein (HSP) genes were the most co-regulated; other genes related with fatty acid metabolism, amino acid metabolism and transportation were also differentially expressed. In low temperature (5 °C), the differences in gene expression of the genes for fatty acid synthesis, transport proteins and cytochrome P450 might explain why SBPH can overwinter in high latitudes, while BPH and WBPH cannot. In addition, other genes related with moulting, and membrane lipid composition might also play roles in resistance to low and high temperatures. Our study illustrates the common responses and different tolerance mechanisms of three rice planthoppers in coping with temperature change, and provides a potential strategy for pest management.


Subject(s)
Genes, Insect , Hemiptera/genetics , Temperature , Acclimatization/genetics , Animals , Asia , Gene Expression Regulation , Hemiptera/classification , Oryza
12.
J Gen Virol ; 97(3): 706-714, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26746854

ABSTRACT

A Cripavirus-like long unique sequence was identified during transcriptome sequencing of the brown planthopper (BPH), Nilaparvata lugens. This unique sequence demonstrated high similarity with the whole-genome sequence of cricket paralysis virus, including 5' and 3' untranslated regions; thus we considered it the whole genome of a new virus. We propose that the virus be named Nilaparvata lugens C virus (NlCV). The plus-strand RNA genome spanned 9144 nt, excluding a 3' poly(A) tail with two large ORFs encoding structural and non-structural proteins, respectively. Detection of NlCV in BPH honeydew raised the hypothesis of horizontal transmission of the virus. Honeydew from viruliferous BPHs was used to feed non-viruliferous insects, the results of which indicated that the BPH could acquire NlCV through feeding and that the virus could multiply in the insect body. A tissue-specific distribution test using real-time quantitative PCR demonstrated that NlCV was mainly present in the reproductive organs, and the virus was detected in eggs laid by viruliferous female insects using nested PCR, indicating the possibility of vertical transmission as well. As no significant symptom was detected in the viruliferous BPH, NlCV is considered a new commensal virus of BPH. Interestingly, this virus was also detected in two other hemipteran insects, the white-backed planthopper and the horned gall aphid, indicating that NlCV might be present in many other hemipteran insects and have a wide host range.


Subject(s)
Dicistroviridae/isolation & purification , Hemiptera/virology , Animals , Dicistroviridae/classification , Dicistroviridae/genetics , Female , Male , Molecular Sequence Data , Open Reading Frames , Phylogeny , Viral Proteins/genetics
14.
J Virol ; 88(10): 5310-8, 2014 May.
Article in English | MEDLINE | ID: mdl-24574410

ABSTRACT

UNLABELLED: The brown planthopper (BPH), Nilaparvata lugens (Hemiptera:Delphacidae), is one of the most destructive insect pests of rice crops in Asia. Nudivirus-like sequences were identified during the whole-genome sequencing of BPH. PCR examination showed that the virus sequences were present in all of the 22 BPH populations collected from East, Southeast, and South Asia. Thirty-two of the 33 nudivirus core genes were identified, including 20 homologues of baculovirus core genes. In addition, several gene clusters that were arranged collinearly with those of other nudiviruses were found in the partial virus genome. In a phylogenetic tree constructed using the supermatrix method, the original virus was grouped with other nudiviruses and was closely related to polydnavirus. Taken together, these data indicated that the virus sequences belong to a new member of the family Nudiviridae. More specifically, the virus sequences were integrated into the chromosome of its insect host during coevolution. This study is the first report of a large double-stranded circular DNA virus genome in a sap-sucking hemipteran insect. IMPORTANCE: This is the first report of a large double-stranded DNA virus integrated genome in the planthopper, a plant sap-sucking hemipteran insect. It is an exciting addition to the evolutionary story of bracoviruses (polydnaviruses), nudiviruses, and baculoviruses. The results on the virus sequences integrated in the chromosomes of its insect host also represent a story of successful coevolution of an invertebrate virus and a plant sap-sucking insect.


Subject(s)
DNA Viruses/genetics , DNA Viruses/isolation & purification , Genome, Insect , Hemiptera/virology , Virus Integration , Animals , Asia , Cluster Analysis , DNA, Viral/chemistry , DNA, Viral/genetics , Hemiptera/genetics , Molecular Sequence Data , Phylogeny , Sequence Analysis, DNA , Sequence Homology
15.
Genome Biol ; 15(12): 521, 2014 Dec 03.
Article in English | MEDLINE | ID: mdl-25609551

ABSTRACT

BACKGROUND: The brown planthopper, Nilaparvata lugens, the most destructive pest of rice, is a typical monophagous herbivore that feeds exclusively on rice sap, which migrates over long distances. Outbreaks of it have re-occurred approximately every three years in Asia. It has also been used as a model system for ecological studies and for developing effective pest management. To better understand how a monophagous sap-sucking arthropod herbivore has adapted to its exclusive host selection and to provide insights to improve pest control, we analyzed the genomes of the brown planthopper and its two endosymbionts. RESULTS: We describe the 1.14 gigabase planthopper draft genome and the genomes of two microbial endosymbionts that permit the planthopper to forage exclusively on rice fields. Only 40.8% of the 27,571 identified Nilaparvata protein coding genes have detectable shared homology with the proteomes of the other 14 arthropods included in this study, reflecting large-scale gene losses including in evolutionarily conserved gene families and biochemical pathways. These unique genomic features are functionally associated with the animal's exclusive plant host selection. Genes missing from the insect in conserved biochemical pathways that are essential for its survival on the nutritionally imbalanced sap diet are present in the genomes of its microbial endosymbionts, which have evolved to complement the mutualistic nutritional needs of the host. CONCLUSIONS: Our study reveals a series of complex adaptations of the brown planthopper involving a variety of biological processes, that result in its highly destructive impact on the exclusive host rice. All these findings highlight potential directions for effective pest control of the planthopper.


Subject(s)
Genome, Insect , Hemiptera/genetics , Hemiptera/microbiology , Herbivory , Oryza/physiology , Adaptation, Biological , Animals , Arthropods/genetics , Asia , Bacteria/genetics , Evolution, Molecular , Genomics , Hemiptera/physiology , Host Specificity , Molecular Sequence Data , Multigene Family , Phylogeny , Sequence Homology, Nucleic Acid , Symbiosis
16.
Genomics ; 102(1): 63-71, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23639478

ABSTRACT

Bombyx mori nucleopolyhedrovirus (BmNPV) is a baculovirus that selectively infects the domestic silkworm. In this study, six BmNPV strains were compared at the whole genome level. We found that the number of bro genes and the composition of the homologous regions (hrs) are the two primary areas of divergence within these genomes. When we compared the ORFs of these BmNPV variants, we noticed a high degree of sequence divergence in the ORFs that are not baculovirus core genes. This result is consistent with the results derived from phylogenetic trees and evolutionary pressure analyses of these ORFs, indicating that ORFs that are not core genes likely play important roles in the evolution of BmNPV strains. The evolutionary relationships of these BmNPV strains might be explained by their geographic origins or those of their hosts. In addition, the total number of hr palindromes seems to affect viral DNA replication in Bm5 cells.


Subject(s)
Bombyx/genetics , Genome, Viral , Nucleopolyhedroviruses/genetics , Viral Proteins/genetics , Animals , Bombyx/virology , Genetic Variation , Inverted Repeat Sequences/genetics , Open Reading Frames/genetics , Phylogeny , Sequence Homology, Nucleic Acid , Virus Replication/genetics
17.
J Gen Virol ; 93(Pt 11): 2480-2489, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22855783

ABSTRACT

A baculovirus, named BomaNPV S2, was isolated from a diseased larva of the wild silkworm, Bombyx mandarina. Notably, BomaNPV S2 exhibited a distinguishing feature in that its host range covered that of both Bombyx mori nucleopolyhedrosis virus (BmNPV) and Autographa californica multiple nucleopolyhedrovirus (AcMNPV) in cultured cells. It could replicate in cells of B. mori (Bm5 and BmN), Spodoptera frugiperda (Sf9) and Trichoplusia ni (Tn-5B1-4). However, occlusion-derived virions of BomaNPV S2 in B. mori cells contained only a single nucleocapsid, whereas they contained multiple nucleocapsids in Tn-5B1-4 cells. The complete genome sequence of BomaNPV S2, including predicted ORFs, was determined and compared with the genome sequence of its close relatives. The comparison results showed that most of the BomaNPV S2 genome sequence was shared with BmNPV (BmNPV T3) or BomaNPV S1, but several regions seemed more similar to regions of AcMNPV. This observation might explain why BomaNPV S2 covers the host ranges of BmNPV and AcMNPV. Further recombinant virus infection experiments demonstrated that GP64 plays an important role in BomaNPV S2 host-range determination.


Subject(s)
Baculoviridae/genetics , Baculoviridae/isolation & purification , Bombyx/virology , Amino Acid Sequence , Animals , Baculoviridae/classification , Cell Line , Gene Expression Regulation, Viral/physiology , Genome, Viral , Host-Pathogen Interactions , Molecular Sequence Data , Reassortant Viruses , Time Factors , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Cultivation , Virus Replication
18.
J Virol ; 86(18): 10245, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22923803

ABSTRACT

Bombyx mori nucleopolyhedrovirus (BmNPV) is a typical species of Baculoviridae. The complete genome sequence of a BmNPV strain with cubic occlusion bodies is reported here. The genome of this strain consists of 127,465 nucleotides with a G+C content of 40.36% and is 97.3% and 97.5% identical to those of BmNPV strain T3 and Bombyx mandarina NPV S1, respectively. Despite the abnormal polyhedra it forms, the polyhedrin gene of the BmNPV cubic strain is 100% identical to those of the other two strains. Baculovirus repeated ORFs and homologous repeat regions cause the major differences in genome size of these BmNPV isolates.


Subject(s)
Bombyx/virology , Nucleopolyhedroviruses/genetics , Animals , DNA, Viral/genetics , Genome, Viral , Inclusion Bodies, Viral/virology , Molecular Sequence Data , Nucleopolyhedroviruses/classification , Occlusion Body Matrix Proteins , Viral Structural Proteins/genetics
19.
J Virol ; 86(17): 9544, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22879615

ABSTRACT

Pieris rapae granulovirus (PrGV) can infect and kill larvae of Pieris rapae, a worldwide and important pest of mustard family crops. The PrGV genome consists of 108,592 bp, is AT rich (66.8%), and is most structurally and organizationally similar to the Choristoneura occidentalis granulovirus genome. Of the predicted 120 open reading frames (ORFs), 32 genes specifically occurred in GVs, including four genes unique to PrGV (Pr9, Pr32, Pr53, and Pr117).


Subject(s)
Butterflies/virology , Genome, Viral , Granulovirus/genetics , Insect Viruses/genetics , Animals , Base Sequence , Granulovirus/classification , Granulovirus/isolation & purification , Insect Viruses/classification , Insect Viruses/isolation & purification , Molecular Sequence Data , Open Reading Frames , Phylogeny
20.
Virus Genes ; 45(1): 161-8, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22585339

ABSTRACT

The Bombyx mori nucleopolyhedrovirus (BmNPV) is a baculovirus that selectively infects domestic silkworm. BmNPV ORF71 (Bm71) is not a core set gene in baculovirus and shares 92 % amino acid sequence identity with Autographa californica multinucleocapsid NPV ORF88 (Ac88/cg30). Previously, it has been reported that virus lacking Ac88 had no striking phenotypes in cell lines or host larvae. However, the exact role of Bm71 during BmNPV life cycle remains unknown. In the present study, we constructed a Bm71-disrupted (Bm71-D) virus and assessed the effect of the Bm71 disruption on viral replication and viral phenotype throughout the viral life cycle. Results showed that the Bm71-D bacmid could successfully transfect Bm5 cell lines and produce infectious budded virus (BV). But the BV titer was 10- to 100-fold lower than that of the wild-type (WT) virus during infection, and the decreased BV titer was rescued by Bm71 gene repair virus (Bm71-R). A larval bioassay showed that Bm71-D virus took 7.5 h longer than the WT to kill Bombyx mori larvae. Transmission electron microscopy analysis indicated that the Bm71-D virus-infected cells had typical virogenic stroma, bundles of nucleocapsids and polyhedra. Taken together, these results suggest that Bm71 has important implications for determining BV yield and virulence in viral life cycle even though it is not an essential gene for replication of BmNPV.


Subject(s)
Bombyx/virology , Nucleopolyhedroviruses/pathogenicity , Open Reading Frames/genetics , Virus Release , Animals , Biological Assay , Bombyx/growth & development , Cell Line , Homologous Recombination , Larva/virology , Microscopy, Electron, Transmission , Mutation , Nucleopolyhedroviruses/genetics , Nucleopolyhedroviruses/growth & development , Nucleopolyhedroviruses/metabolism , Open Reading Frames/physiology , Transfection , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...