Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 36(19): 5156-5164, 2020 May 19.
Article in English | MEDLINE | ID: mdl-32326706

ABSTRACT

In this work, we study the charge formation and the characteristics of the electrical double layer in a nonpolar medium using electrical impedance spectroscopy. To stabilize the free ionic species, a nonionic surfactant is added to the system. The conductivity and permittivity of the medium are obtained from high- to medium-frequency impedance data. Based on the correlation between (viscosity-adjusted) conductivity and surfactant concentration, we conclude that charge formation occurs due to a disproportionation mechanism. We accordingly estimate the concentration of the charge carriers in the sample and the Debye length of the diffuse double layer. The capacitance of the electrical double layer can be extracted from the low-frequency impedance data. We use this data to calculate the electrode distance of an equivalent parallel-plate capacitor. It is found that this distance is on the order of magnitude of Angstroms, indicating that the measured electrical double-layer capacitance is in fact the Stern layer capacitance.

2.
Environ Pollut ; 259: 113880, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32040986

ABSTRACT

Silver nanoparticles (AgNP) are commonly used in medical, cosmetics, clothing, and industrial applications for their antibacterial and catalytic properties. As AgNP become more prevalent, the doses to which humans are exposed may increase and pose health risks, particularly through incidental inhalation. This exposure was evaluated through in-vitro methods simulating lung fluids and lung epithelium, and through computational fluid dynamics (CFD) methods of AgNP transport. A high-dose scenario simulated a short-term inhalation of 10 µg AgNP/m3, based on an exposure limit recommended by the National Institute of Occupational Safety and Health for the case of a health-care worker who handles AgNP-infused wound dressings, and regularly wears AgNP-imbedded clothing. Bioaccessibility tests were followed by a Parallel Artificial Membrane Permeability Assay (PAMPA) and supported by CFD models of the lung alveoli, membrane, pores, and blood capillaries. Results indicate that such exposure produces an average and maximum AgNP flux of approximately 4.7 × 10-21 and 6.5 × 10-19 mol m-2·s-1 through lung tissue, respectively, yielding a blood-silver accumulation of 0.46-64 mg per year, which may exceed the lowest adverse effect level of 25 mg for an adult male. Results from in-silico simulations were consistent with values estimated in vitro (within an order of magnitude), which suggest that CFD models may be used effectively to predict silver exposure from inhaled AgNP. Although the average short-term exposure concentrations are 3 orders of magnitude smaller than the reported threshold for mammalian cytotoxicity effects (observed at 5000 ppb), cumulative effects resulting from constant exposure to AgNP may pose risks to human health in the long-term, with predicted bioaccumulation reaching potential toxic effects after only five months of exposure, based on maximum flux.


Subject(s)
Lung , Metal Nanoparticles , Silver , Adult , Anti-Bacterial Agents , Computer Simulation , Environmental Exposure , Humans , Hydrodynamics , In Vitro Techniques , Lung/chemistry , Lung/metabolism , Male , Silver/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...