Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 22(7)2021 Mar 26.
Article in English | MEDLINE | ID: mdl-33810353

ABSTRACT

Many pairwise additive force fields are in active use for intrinsically disordered proteins (IDPs) and regions (IDRs), some of which modify energetic terms to improve the description of IDPs/IDRs but are largely in disagreement with solution experiments for the disordered states. This work considers a new direction-the connection to configurational entropy-and how it might change the nature of our understanding of protein force field development to equally well encompass globular proteins, IDRs/IDPs, and disorder-to-order transitions. We have evaluated representative pairwise and many-body protein and water force fields against experimental data on representative IDPs and IDRs, a peptide that undergoes a disorder-to-order transition, for seven globular proteins ranging in size from 130 to 266 amino acids. We find that force fields with the largest statistical fluctuations consistent with the radius of gyration and universal Lindemann values for folded states simultaneously better describe IDPs and IDRs and disorder-to-order transitions. Hence, the crux of what a force field should exhibit to well describe IDRs/IDPs is not just the balance between protein and water energetics but the balance between energetic effects and configurational entropy of folded states of globular proteins.


Subject(s)
Intrinsically Disordered Proteins/chemistry , Molecular Dynamics Simulation , Protein Engineering , Bayes Theorem , Computer Simulation , Entropy , Magnetic Resonance Spectroscopy , Peptides/chemistry , Polymers/chemistry , Protein Conformation , Protein Folding , Protein Structure, Secondary , Solvents , Static Electricity , Temperature
2.
Data Brief ; 30: 105496, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32368578

ABSTRACT

The structural conformations of phospholipids and cholesterol in phase-separated lipid domains were determined by surface area, transverse density profile, and lipid acyl chain orientational parameter calculations. Binding kinetics and characterization of membrane-bound states of beta-amyloid fibrils of various sizes (dimer to pentamer), on those lipid domains, were determined using protein residue orientational parameter and fibril-residue-lipid minimum distance analysis methods. The energy of binding and characterization of annular lipid shells surrounding the surface-bound amyloid fibrils were also determined. The calculations described above support the article "Coarse-Grained MD simulations Reveal Diverse Membrane-Bound Conformational States of Beta-Amyloid Fibrils in the Liquid-ordered and Liquid-disordered Regions of Phase-Separated Lipid Rafts Containing Glycolipid, Cholesterol and Oxidized Cholesterol (Cheng et al., 2020 [1])". The reported data is valuable for the future design and analysis of any protein fibrils binding to phase-separated lipid domains in model multi-component lipids membranes using either atomistic or coarse-grained molecular dynamics simulations. Additionally, this data can guide or validate future single-molecule experiments on fibril/membrane interactions in model or cell membranes.

3.
Biophys Chem ; 260: 106355, 2020 05.
Article in English | MEDLINE | ID: mdl-32179374

ABSTRACT

The membrane binding behaviors of beta-amyloid fibrils, dimers to pentamers, from solution to lipid raft surfaces, were investigated using coarse-grained (CG) MD simulations. Our CG rafts contain phospholipid, cholesterol (with or without tail- or headgroup modifications), and with or without asymmetrically distributed monosialotetrahexosylganglioside (GM1). All rafts exhibited liquid-ordered (Lo), liquid-disordered (Ld), and interfacial Lo/Ld (Lod) domains, with domain sizes depending on cholesterol structure. For rafts without GM1, all fibrils bound to the Lod domains. Specifically, dimer fibrils bound exclusively via the C-terminal, while larger fibrils could bind via other protein regions. Interestingly, a membrane-inserted state was detected for a trimer fibril in a raft with tail-group modified cholesterol. For rafts containing GM1, fibrils bound either to the GM1-clusters, with numerous membrane-bound conformations, or to the non-GM1-containing-Lod domains via the C-terminal. Our results indicate beta-amyloid fibrils bind to Lod domains or GM1, with diversified membrane-bound conformations, in structurally heterogeneous lipid membranes.


Subject(s)
Amyloid beta-Peptides/chemistry , Lipids/chemistry , Molecular Dynamics Simulation , Binding Sites , Humans , Molecular Conformation , Particle Size
4.
Annu Rev Biophys ; 48: 371-394, 2019 05 06.
Article in English | MEDLINE | ID: mdl-30916997

ABSTRACT

Realistic modeling of biomolecular systems requires an accurate treatment of electrostatics, including electronic polarization. Due to recent advances in physical models, simulation algorithms, and computing hardware, biomolecular simulations with advanced force fields at biologically relevant timescales are becoming increasingly promising. These advancements have not only led to new biophysical insights but also afforded opportunities to advance our understanding of fundamental intermolecular forces. This article describes the recent advances and applications, as well as future directions, of polarizable force fields in biomolecular simulations.


Subject(s)
Molecular Dynamics Simulation , Static Electricity , Algorithms , Physical Phenomena
5.
J Am Chem Soc ; 139(20): 7110-7116, 2017 05 24.
Article in English | MEDLINE | ID: mdl-28463488

ABSTRACT

High-resolution melting (HRM) analysis of DNA is a closed-tube single-nucleotide polymorphism (SNP) detection method that has shown many advantages in point-of-care diagnostics and personalized medicine. While recently developed melting probes have demonstrated significantly improved discrimination of mismatched (mutant) alleles from matched (wild-type) alleles, no effort has been made to design a simple melting probe that can reliably distinguish all four SNP alleles in a single experiment. Such a new probe could facilitate the discovery of rare genetic mutations at lower cost. Here we demonstrate that a melting probe embedded with a single locked thymidine monomer (tL) can reliably differentiate the four SNP alleles by four distinct melting temperatures (termed the "4Tm probe"). This enhanced discriminatory power comes from the decreased melting temperature of the tL·C mismatched hybrid as compared to that of the t·C mismatched hybrid, while the melting temperatures of the tL-A, tL·G and tL·T hybrids are increased or remain unchanged as compared to those of their canonical counterparts. This phenomenon is observed not only in the HRM experiments but also in the molecular dynamics simulations.


Subject(s)
DNA Probes/chemistry , Oligonucleotides/chemistry , Polymorphism, Single Nucleotide/genetics , Thymidine/chemistry , Transition Temperature , Alleles , Molecular Dynamics Simulation
6.
Sci Rep ; 7: 45812, 2017 04 10.
Article in English | MEDLINE | ID: mdl-28393861

ABSTRACT

We introduce a coarse-grained RNA model for molecular dynamics simulations, RACER (RnA CoarsE-gRained). RACER achieves accurate native structure prediction for a number of RNAs (average RMSD of 2.93 Å) and the sequence-specific variation of free energy is in excellent agreement with experimentally measured stabilities (R2 = 0.93). Using RACER, we identified hydrogen-bonding (or base pairing), base stacking, and electrostatic interactions as essential driving forces for RNA folding. Also, we found that separating pairing vs. stacking interactions allowed RACER to distinguish folded vs. unfolded states. In RACER, base pairing and stacking interactions each provide an approximate stability of 3-4 kcal/mol for an A-form helix. RACER was developed based on PDB structural statistics and experimental thermodynamic data. In contrast with previous work, RACER implements a novel effective vdW potential energy function, which led us to re-parameterize hydrogen bond and electrostatic potential energy functions. Further, RACER is validated and optimized using a simulated annealing protocol to generate potential energy vs. RMSD landscapes. Finally, RACER is tested using extensive equilibrium pulling simulations (0.86 ms total) on eleven RNA sequences (hairpins and duplexes).


Subject(s)
Molecular Dynamics Simulation , RNA Folding , RNA/chemistry , Models, Molecular , Thermodynamics
7.
Data Brief ; 7: 658-72, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27054174

ABSTRACT

This data article supports the research article entitled "Maximally Asymmetric Transbilayer Distribution of Anionic Lipids Alters the Structure and interaction with Lipids of an Amyloidogenic Protein Dimer Bound to the Membrane Surface" [1]. We describe supporting data on the binding kinetics, time evolution of secondary structure, and residue-contact maps of a surface-absorbed beta-amyloid dimer protein on different membrane surfaces. We further demonstrate the sorting of annular and non-annular regions of the protein/lipid bilayer simulation systems, and the correlation of lipid-number mismatch and surface area per lipid mismatch of asymmetric lipid membranes.

8.
Chem Phys Lipids ; 196: 33-51, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26827904

ABSTRACT

We used molecular dynamics simulations to explore the effects of asymmetric transbilayer distribution of anionic phosphatidylserine (PS) lipids on the structure of a protein on the membrane surface and subsequent protein-lipid interactions. Our simulation systems consisted of an amyloidogenic, beta-sheet rich dimeric protein (D42) absorbed to the phosphatidylcholine (PC) leaflet, or protein-contact PC leaflet, of two membrane systems: a single-component PC bilayer and double PC/PS bilayers. The latter comprised of a stable but asymmetric transbilayer distribution of PS in the presence of counterions, with a 1-component PC leaflet coupled to a 1-component PS leaflet in each bilayer. The maximally asymmetric PC/PS bilayer had a non-zero transmembrane potential (TMP) difference and higher lipid order packing, whereas the symmetric PC bilayer had a zero TMP difference and lower lipid order packing under physiologically relevant conditions. Analysis of the adsorbed protein structures revealed weaker protein binding, more folding in the N-terminal domain, more aggregation of the N- and C-terminal domains and larger tilt angle of D42 on the PC leaflet surface of the PC/PS bilayer versus the PC bilayer. Also, analysis of protein-induced membrane structural disruption revealed more localized bilayer thinning in the PC/PS versus PC bilayer. Although the electric field profile in the non-protein-contact PS leaflet of the PC/PS bilayer differed significantly from that in the non-protein-contact PC leaflet of the PC bilayer, no significant difference in the electric field profile in the protein-contact PC leaflet of either bilayer was evident. We speculate that lipid packing has a larger effect on the surface adsorbed protein structure than the electric field for a maximally asymmetric PC/PS bilayer. Our results support the mechanism that the higher lipid packing in a lipid leaflet promotes stronger protein-protein but weaker protein-lipid interactions for a dimeric protein on membrane surfaces.


Subject(s)
Amyloid beta-Peptides/chemistry , Lipid Bilayers/chemistry , Anions , Dimerization , Molecular Dynamics Simulation , Molecular Structure , Protein Conformation , Static Electricity
9.
Biophys Chem ; 206: 22-39, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26164502

ABSTRACT

We have used coarse-grained (CG) and united atom (UA) molecular dynamics simulations to explore the mechanisms of protein orientational transition of a model peptide (Aß42) in a phosphatidylcholine/cholesterol (PC/CHO) lipid bilayer. We started with an inserted state of Aß42 containing a folded (I) or unfolded (II) K28-A42 lipid insertion domain (LID), which was stabilized by the K28-snorkeling and A42-anchoring to the PC polar groups in the lipid bilayer. After a UA-to-CG transformation and a 1000ns-CG simulation for enhancing the sampling of protein orientations, we discovered two transitions: I-to-"deep inserted" state with disrupted K28-snorkeling and II-to-"deep surface" state with disrupted A42-anchoring. The new states remained stable after a CG-to-UA transformation and a 200ns-UA simulation relaxation. Significant changes in the cholesterol-binding domain of Aß42 and protein-induced membrane disruptions were evident after the transitions. We propose that the conformation of the LID regulates protein orientational transitions in the lipid membrane.


Subject(s)
Amyloid beta-Peptides/chemistry , Cholesterol/chemistry , Lipid Bilayers/chemistry , Peptide Fragments/chemistry , Phosphatidylcholines/chemistry , Protein Unfolding , Amino Acid Sequence , Humans , Molecular Dynamics Simulation , Molecular Sequence Data , Protein Structure, Tertiary
10.
Biophys Chem ; 198: 22-35, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25637891

ABSTRACT

Quantifying protein-induced lipid disruptions at the atomistic level is a challenging problem in membrane biophysics. Here we propose a novel 3D Voronoi tessellation nearest-atom-neighbor shell method to classify and characterize lipid domains into discrete concentric lipid shells surrounding membrane proteins in structurally heterogeneous lipid membranes. This method needs only the coordinates of the system and is independent of force fields and simulation conditions. As a proof-of-principle, we use this multiple lipid shell method to analyze the lipid disruption profiles of three simulated membrane systems: phosphatidylcholine, phosphatidylcholine/cholesterol, and beta-amyloid/phosphatidylcholine/cholesterol. We observed different atomic volume disruption mechanisms due to cholesterol and beta-amyloid. Additionally, several lipid fractional groups and lipid-interfacial water did not converge to their control values with increasing distance or shell order from the protein. This volume divergent behavior was confirmed by bilayer thickness and chain orientational order calculations. Our method can also be used to analyze high-resolution structural experimental data.


Subject(s)
Amyloid beta-Peptides/chemistry , Phospholipids/chemistry , Amino Acid Sequence , Lipid Bilayers , Molecular Dynamics Simulation , Molecular Sequence Data
11.
J Chem Theory Comput ; 10(7): 2792-2801, 2014 Jul 08.
Article in English | MEDLINE | ID: mdl-25018674

ABSTRACT

The orthogonal space random walk (OSRW) method has shown enhanced sampling efficiency in free energy calculations from previous studies. In this study, the implementation of OSRW in accordance with the polarizable AMOEBA force field in TINKER molecular modeling software package is discussed and subsequently applied to the hydration free energy calculation of 20 small organic molecules, among which 15 are positively charged and five are neutral. The calculated hydration free energies of these molecules are compared with the results obtained from the Bennett acceptance ratio method using the same force field, and overall an excellent agreement is obtained. The convergence and the efficiency of the OSRW are also discussed and compared with BAR. Combining enhanced sampling techniques such as OSRW with polarizable force fields is very promising for achieving both accuracy and efficiency in general free energy calculations.

SELECTION OF CITATIONS
SEARCH DETAIL
...