Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-32548105

ABSTRACT

Recent developments in epidemiology have confirmed that airborne particulates are directly associated with respiratory pathology and mortality. Although clinical studies have yielded evidence of the effects of many types of fine particulates on human health, it still does not have a complete understanding of how physiological reactions are caused nor to the changes and damages associated with cellular and molecular mechanisms. Currently, most health assessment studies of particulate matter (PM) are conducted through cell culture or animal experiments. The results of such experiments often do not correlate with clinical findings or actual human reactions, and they also cause difficulty when investigating the causes of air pollution and associated human health hazards, the analysis of biomarkers, and the development of future pollution control strategies. Microfluidic-based cell culture technology has considerable potential to expand the capabilities of conventional cell culture by providing high-precision measurement, considerably increasing the potential for the parallelization of cellular assays, ensuring inexpensive automation, and improving the response of the overall cell culture in a more physiologically relevant context. This review paper focuses on integrating the important respiratory health problems caused by air pollution today, as well as the development and application of biomimetic organ-on-a-chip technology. This more precise experimental model is expected to accelerate studies elucidating the effect of PM on the human body and to reveal new opportunities for breakthroughs in disease research and drug development.

2.
Sensors (Basel) ; 20(7)2020 Mar 27.
Article in English | MEDLINE | ID: mdl-32230996

ABSTRACT

Cancer has been one of the leading causes of death globally, with metastases and recurrences contributing to this result. The detection of circulating tumor cells (CTCs), which have been implicated as a major population of cells that is responsible for seeding and migration of tumor sites, could contribute to early detection of metastasis and recurrences, consequently increasing the chances of cure. This review article focuses on the current progress in microfluidics technology in CTCs diagnostics, extending to the use of nanomaterials and surface modification techniques for diagnostic applications, with an emphasis on the importance of integrating microchannels, nanomaterials, and surface modification techniques in the isolating and detecting of CTCs.


Subject(s)
Cell Separation , Microfluidic Analytical Techniques/methods , Neoplasms/blood , Neoplastic Cells, Circulating/pathology , Cell Count , Humans , Nanostructures/chemistry , Neoplasms/pathology
3.
Int J Mol Sci ; 21(8)2020 Apr 22.
Article in English | MEDLINE | ID: mdl-32331417

ABSTRACT

Retinal prosthesis has recently emerged as a treatment strategy for retinopathies, providing excellent assistance in the treatment of age-related macular degeneration (AMD) and retinitis pigmentosa. The potential application of graphene oxide (GO), a highly biocompatible nanomaterial with superior physicochemical properties, in the fabrication of electrodes for retinal prosthesis, is reviewed in this article. This review integrates insights from biological medicine and nanotechnology, with electronic and electrical engineering technological breakthroughs, and aims to highlight innovative objectives in developing biomedical applications of retinal prosthesis.


Subject(s)
Graphite/chemistry , Nanostructures/chemistry , Nanotechnology , Biocompatible Materials , Humans , Nanotechnology/instrumentation , Nanotechnology/methods , Tissue Engineering , Visual Prosthesis
4.
Nanomaterials (Basel) ; 9(12)2019 Dec 03.
Article in English | MEDLINE | ID: mdl-31816919

ABSTRACT

Liquid biopsies use blood or urine as test samples, which are able to be continuously collected in a non-invasive manner. The analysis of cancer-related biomarkers such as circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), microRNA, and exosomes provides important information in early cancer diagnosis, tumor metastasis detection, and postoperative recurrence monitoring assist with clinical diagnosis. However, low concentrations of some tumor markers, such as CTCs, ctDNA, and microRNA, in the blood limit its applications in clinical detection and analysis. Nanomaterials based on graphene oxide have good physicochemical properties and are now widely used in biomedical detection technologies. These materials have properties including good hydrophilicity, mechanical flexibility, electrical conductivity, biocompatibility, and optical performance. Moreover, utilizing graphene oxide as a biosensor interface has effectively improved the sensitivity and specificity of biosensors for cancer detection. In this review, we discuss various cancer detection technologies regarding graphene oxide and discuss the prospects and challenges of this technology.

5.
Front Cell Dev Biol ; 7: 275, 2019.
Article in English | MEDLINE | ID: mdl-31788472

ABSTRACT

Current research has enabled the use of microphysiological systems and creation of models for alveolar and pulmonary diseases. However, bottlenecks remain in terms of medium- and long-term regulation of cell cultures and their functions in microchannel systems, as well as in the enhancement of in vitro representation of alveolar models and reference values of the data. Currently used systems also require on-chip manufacturing of complex units, such as pumps, tubes, and other cumbersome structures for maintaining cells in culture. In addition, system simplification and minimization of all external and human factors major challenges facing the establishment of in vitro alveolar models. In this study, a magnetically driven dynamic alveolus cell-culture system has been developed to use controlled magnetic force to drive a magnetic film on the chip, thereby directing the fluid within it to produce a circulating flow. The system has been confirmed to be conducive with regard to facilitating uniform attachment of human alveolar epithelial cells and long-term culture. The cell structure has been recapitulated, and differentiation functions have been maintained. Subsequently, reactions between silica nanoparticles and human alveolar epithelial cells have been used to validate the effects and advantages of the proposed dynamic chip-based system compared to a static environment. The innovative concept of use of a magnetic drive has been successfully employed in this study to create a simple and controllable yet dynamic alveolus cell-culture system to realize its functions and advantages with regard to in vitro tissue construction.

6.
Nanomaterials (Basel) ; 9(4)2019 Apr 04.
Article in English | MEDLINE | ID: mdl-30987307

ABSTRACT

Autophagy is the spontaneous degradation of intracellular proteins and organelles in response to nutrient deprivation. The phagocytosis of iron oxide nanoparticles (IONPs) results in intracellular degradation that can be exploited for use in cancer treatment. Non-invasive magnetic control has emerged as an important technology, with breakthroughs achieved in areas such as magneto-thermal therapy and drug delivery. This study aimed to regulate autophagy in mouse B-lymphoma cells (A20) through the incorporation of IONPs-quantum dots (QDs). We hypothesized that with the application of an external magnetic field after phagocytosis of IONPs-QDs, autophagy of intracellular IONPs-QDs could be regulated in a non-invasive manner and subsequently modulate the regulation of inflammatory responses. The potential of this approach as a cancer treatment method was explored. The application of IONPs and an external magnetic force enabled the non-invasive regulation of cell autophagy and modulation of the self-regulatory function of cells. The combination of non-invasive magnetic fields and nanotechnology could provide a new approach to cancer treatment.

7.
Sensors (Basel) ; 18(10)2018 Sep 22.
Article in English | MEDLINE | ID: mdl-30249021

ABSTRACT

Diabetes has become a chronic metabolic disorder, and the growing diabetes population makes medical care more important. We investigated using a portable and noninvasive contact lens as an ideal sensor for diabetes patients whose tear fluid contains glucose. The key feature is the reversible covalent interaction between boronic acid and glucose, which can provide a noninvasive glucose sensor for diabetes patients. We present a phenylboronic acid (PBA)-based HEMA contact lens that exhibits a reversible swelling/shrinking effect to change its thickness. The difference in thickness can be detected in a picture taken with a smartphone and analyzed using software. Our novel technique offers the following capabilities: (i) non-enzymatic and continuous glucose detection with the contact lens; (ii) no need for an embedded circuit and power source for the glucose sensor; and (iii) the use of a smartphone to detect the change in thickness of the contact lens with no need for additional photo-sensors. This technique is promising for a noninvasive measurement of the glucose level and simple implementation of glucose sensing with a smartphone.


Subject(s)
Blood Glucose Self-Monitoring/instrumentation , Blood Glucose Self-Monitoring/methods , Contact Lenses , Glucose/analysis , Smartphone , Tears/chemistry , Humans
8.
ACS Appl Mater Interfaces ; 10(15): 12497-12503, 2018 Apr 18.
Article in English | MEDLINE | ID: mdl-29601178

ABSTRACT

Graphene oxide (GO) has attracted significant interest as a template material for multiple applications due to its two-dimensional nature and established functionalization chemistries. However, for applications toward stem cell culture and differentiation, GO is often reduced to form reduced graphene oxide, resulting in a loss of oxygen content. Here, we induce a phase transformation in GO and demonstrate its benefits for enhanced stem cell culture and differentiation while conserving the oxygen content. The transformation results in the clustering of oxygen atoms on the GO surface, which greatly improves its ability toward substance adherence and results in enhanced differentiation of human mesenchymal stem cells toward the osteogenic lineage. Moreover, the conjugating ability of modified GO strengthened, which was examined by auxiliary osteogenic growth peptide conjugation. Overall, our work demonstrates GO's potential for stem cell applications while maintaining its oxygen content, which could enable further functionalization and fabrication of novel nano-biointerfaces.


Subject(s)
Cell Differentiation , Graphite , Humans , Mesenchymal Stem Cells , Osteogenesis , Stem Cells
9.
Biomater Sci ; 6(4): 813-819, 2018 Mar 26.
Article in English | MEDLINE | ID: mdl-29417098

ABSTRACT

Graphene oxide (GO), a derivative of graphene, and its related nanomaterials have attracted much attention in recent years due to the excellent biocompatibility and large surface area of GO with abundant oxygen functional groups, which further enable it to serve as a nano-bio interface. Herein, we demonstrate the induction of blue fluorescence in GO suspensions via a mild thermal annealing procedure. Additionally, this procedure preserves the oxygen functional groups on the graphene plane which enables the conjugation of cancer drugs without obvious cytotoxicity. Consequently, we demonstrate the capability of GO to simultaneously play the dual-role of a: (i) cellular imaging agent and (ii) drug delivery agent in CT26 cancer cells without the need for additional fluorescent protein labeling. Our method offers a simple, controllable strategy to tune and enhance the fluorescence property of GO, which shows potential for biomedical applications and fundamental studies.


Subject(s)
Drug Carriers/chemistry , Graphite/chemistry , Nanostructures/chemistry , Animals , Antineoplastic Agents/administration & dosage , Cell Line, Tumor , Cisplatin/administration & dosage , Mice , Microscopy, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL
...