Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 270(Pt 1): 131889, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38782624

ABSTRACT

This work aimed at building functional emulsions based on the linear dextrins (LDs) emulsion system. The gradient polyethylene glycol (PEG) precipitaion method was used to fractionate LDs into fractions with different degrees of polymerization (DP). A package, and co-precipitation procedure of LDs, and eicosapentaenoic acid (EPA) was used to fabricate LDs-EPA composites. The gas chromatograph, Fourier transform infrared spectroscopy, X-ray diffraction and differential scanning calorimetry analyses affirmed the formation of the LDs-EPA composites. The sizes of these composites were 38.55 nm, 59.14 nm to 80.62 nm, respectively, and they had good amphiphilicity. Compared with LDs, these LDs-EPA composites stabilized Pickering emulsion had higher stability and antioxidant capacity. Their emulsifying ability was positively correlated with the DP values of LDs. Furthermore, the oxidation stability results showed that LDsF10-EPA emulsion had the lowest lipid hydroperoxide (LHs) content, malondioxide (MDA) content and hexal concentration, which were 138.75 mmol kg-1 oil, 15.50 mmol kg-1 oil and 3.83 µmol kg-1 oil, respectively. The study provided a new idea and application values for the application of LDs in emulsion.


Subject(s)
Dextrins , Eicosapentaenoic Acid , Emulsions , Polymerization , Emulsions/chemistry , Eicosapentaenoic Acid/chemistry , Eicosapentaenoic Acid/analogs & derivatives , Dextrins/chemistry , Antioxidants/chemistry , Emulsifying Agents/chemistry , Polyethylene Glycols/chemistry , X-Ray Diffraction
2.
Food Chem ; 451: 139415, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38670020

ABSTRACT

The interaction mechanism between soybean protein isolate (SPI) and furan flavor compounds with different structures is studied using spectroscopy, molecular docking, and MD simulation methods. The order of binding ability between SPI and furan flavor compounds is 2-acetylfuran>furfural>5-methylfurfural. The structural differences (position and quantity of methyl groups) of three furan flavor compounds are key factors leading to the different adsorption abilities of SPI for furan flavor compounds. The findings from spectroscopy analyses suggest that the interaction between SPI and furan flavor compounds involves both static and dynamic quenching mechanisms, with static quenching being the main factor. Molecular docking and MD simulations reveal the atomic-level mechanisms underlying the stable binding for SPI and furan flavor compounds at spatiotemporal multiscale. This study provides a theoretical framework for the production and adjustment of meat essence formula in the production of soybean protein-based meat products.


Subject(s)
Flavoring Agents , Furans , Molecular Docking Simulation , Soybean Proteins , Soybean Proteins/chemistry , Adsorption , Furans/chemistry , Flavoring Agents/chemistry , Glycine max/chemistry , Meat Products/analysis , Molecular Dynamics Simulation
3.
Int J Biol Macromol ; 269(Pt 1): 131770, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38688793

ABSTRACT

Poor storage stability limits the application of liquid diabetes formula food for special medical purposes (L-D-FSMP) in maintaining blood sugar stability in diabetic patients. This work aims to improve the stability of L-D-FSMP by adjusting the ratio of xanthan gum (XG) and carrageenan (CG) in casein (CA)-XG-CG ternary complex. The centrifugal sedimentation rate results showed that the compound ratio of XG and CG had a greater impact on L-D-FSMP storage stability. Transmission electron microscopy (TEM) results showed that the combination of CA, XG and CG occurred. Fourier transform infrared spectroscopy (FTIR) results showed that CA, XG and CG were mainly combined through hydrogen bonds and ionic bonds to form a CA-XG-CG ternary complex. When the ratio of XG and CG was 1:1, the number of disulfide bonds was the largest. The results of three-phase contact angle and emulsifying ability confirmed that when the ratio of XG and CG was 1:1, CA-XG-CG had the strongest emulsifying ability. The particle size distribution and zeta-potential results showed that when the ratio of XG and CG was 1:1, L-D-FSMP had the narrowest particle size distribution range and the strongest stability. These results may provide valuable information for the production of stable L-D-FSMP.


Subject(s)
Carrageenan , Caseins , Polysaccharides, Bacterial , Caseins/chemistry , Polysaccharides, Bacterial/chemistry , Carrageenan/chemistry , Diabetes Mellitus/drug therapy , Food, Formulated , Humans , Particle Size , Spectroscopy, Fourier Transform Infrared
4.
Ultrason Sonochem ; 104: 106843, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38471387

ABSTRACT

The primary significance of this work is that the commercial yeast proteins particles were successfully used to characterize the high internal phase Pickering emulsions (HIPPEs). The different sonication time (0,3,7,11,15 min) was used to modulate the structure and interface characteristics of yeast proteins (YPs) that as Pickering particles. Immediately afterward, the influence of YPs particles prepared at different sonication time on the rheological behavior and coalescence mechanism of HIPPEs was investigated. The results indicate that the YPs sonicated for 7 min exhibited a more relaxed molecular structures and conformation, the smallest particle size, the highest H0 and optimal amphiphilicity (the three-phase contact (θ) was 88.91°). The transition from extended to compact conformations of YPs occurred when the sonication time exceeded 7 min, resulting in an augmentation of size of YPs particles, a reduction in surface hydrophobicity (H0), and an elevation in hydrophilicity. The HIPPEs stabilized by YPs particles sonicated for 7 min exhibited the highest adsorption interface protein percentage and a more homogeneous three-dimensional (3D) protein network, resulting in the smallest droplet size and the highest storage (G'). The HIPPEs sample that stabilized by YPs particles sonicated for 15 min showed the lowest adsorption protein percentage. This caused a reduction in the thickness of its interface protein layer and an enlargement in the droplet diameter (D [3,2]). It was prone to droplet coalescence according to the equation used to evaluate the coalescence probability of droplets (Eq (2)). And the non-adsorbed YPs particles form larger aggregation structures in the continuous phase and act as "structural agents" in 3D protein network. Therefore, mechanistically, the interface protein layer formed by YPs particles sonicated 7 min contributed more to HIPPEs stability. Whereas the "structural agents" contributed more to HIPPEs stability when the sonication time exceeded 7 min. The present results shed important new light on the application of commercial YPs in the functional food fields, acting as an available and effective alternative protein.


Subject(s)
Fungal Proteins , Sonication , Emulsions/chemistry , Hydrophobic and Hydrophilic Interactions , Particle Size
5.
Adv Colloid Interface Sci ; 326: 103124, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38461766

ABSTRACT

Nanomedicine has a profound impact on various research domains including drug delivery, diagnostics, theranostics, and regenerative medicine. Nevertheless, the clinical translation of nanomedicines for solid cancer remains limited due to the abundant physiological and pathological barriers in tumor that hinder the intratumoral penetration and distribution of these nanomedicines. In this article, we review the dynamic remodeling of tumor extracellular matrix during the tumor progression, discuss the impact of biophysical obstacles within tumors on the penetration and distribution of nanomedicines within the solid tumor and collect innovative approaches to surmount these obstacles for improving the penetration and accumulation of nanomedicines in tumor. Furthermore, we dissect the challenges and opportunities of the respective approaches, and propose potential avenues for future investigations. The purpose of this review is to provide a perspective guideline on how to effectively enhance the penetration of nanomedicines within tumors using promising methods.


Subject(s)
Antineoplastic Agents , Nanoparticles , Neoplasms , Humans , Nanomedicine , Neoplasms/drug therapy , Neoplasms/pathology , Drug Delivery Systems , Extracellular Matrix/pathology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
6.
Int J Biol Macromol ; 256(Pt 1): 128381, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38000596

ABSTRACT

The interactions between carboxymethyl cellulose sodium and proteins can regulate the interfacial and rheological properties of HIPEs, which plays a leading role in the stabilities of HIPEs. This article prepared various ratios of soluble soy protein isolate/carboxymethyl cellulose sodium (SPI/CMC) complexes in different proportions and examined the impact of various ratios of complexes on the structure and interface properties of complexes systems. Additionally, it explored the co-emulsification mechanism of HIPEs using SPI and CMC. At appropriate ratios of SPI/CMC, SPI and CMC mainly combine through non covalent binding and form complexes with smaller particle sizes and stronger electrostatic repulsion. The interfacial properties indicated that adding appropriate CMC increased the pliability and reduced the interfacial tension, while also enhancing the wettability of SPI/CMC complexes. At the ratio of 2:1, the SPI/CMC complexes-stabilized HIPPEs exhibited smaller oil droplets size, tighter droplet packing, and thicker interfacial film through the bridging of droplets and the generation of stronger gel-like network structures to prevent the coalescence/flocculation of droplets. These results suggested that the appropriate ratios of SPI/CMC can improve the physical stability of HIPEs by changing the structure and interface characteristics of the SPI/CMC complexes. This work provided theoretical support for stable HIPEs formed with protein-polysaccharide complexes.


Subject(s)
Carboxymethylcellulose Sodium , Soybean Proteins , Soybean Proteins/chemistry , Emulsions/chemistry , Wettability , Particle Size , Sodium
7.
Ultrason Sonochem ; 96: 106421, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37137245

ABSTRACT

The protein conformation of soymilk is the key to affecting the instant solubility of soymilk flour. This study aimed to evaluate the effect of cavitation jet treatment time (0, 2, 4, 6, and 8 min) on the instant solubility of soymilk flour based on the conformational changes of protein in soymilk. The results showed that the cavitation jet treatment for 0-4 min significantly unfolded the protein structure of soymilk and increased the content of soluble protein, which reduced the particle size and increased the electrostaticrepulsion and the viscosity of soymilk. This was beneficial for soymilk droplets fully atomized and repolymerized in the spray drying tower, forming soymilk flour particles with large size, smooth surface, and uniform distribution. When the cavitation jet treatment time was 4 min, the wettability (from 127.3 ± 2.5 s to 84.7 ± 2.1 s), dispersibility (from 70.0 ± 2.0 s to 55.7 ± 2.1 s), and solubility (from 56.54% to 78.10%) of soymilk flour were significantly improved. However, when the time of the cavitation jet treatment was extended to 8 min, the protein of soymilk aggregated and the stability of soymilk decreased, which reduced the particle size and hurt the surfacecharacteristics of soymilk flour after spraydrying. It resulted in a decrease in the instant solubility of soymilk flour. Therefore, the cavitationjet treatment with proper time increases the instant solubility of soymilk flour by improving the protein conformation of soymilk.


Subject(s)
Flour , Soy Milk , Solubility , Chemical Phenomena , Soy Milk/chemistry , Protein Conformation
8.
Foods ; 12(10)2023 May 13.
Article in English | MEDLINE | ID: mdl-37238801

ABSTRACT

Native soy protein isolate (N-SPI) has a low denaturation point and low solubility, limiting its industrial application. The influence of different industrial modification methods (heat (H), alkaline (A), glycosylation (G), and oxidation (O)) on the structure of SPI, the properties of the gel, and the gel properties of soy protein isolate (SPI) in myofibril protein (MP) was evaluated. The study found that four industrial modifications did not influence the subunit composition of SPI. However, the four industrial modifications altered SPI's secondary structure and disulfide bond conformation content. A-SPI exhibits the highest surface hydrophobicity and I850/830 ratio but the lowest thermal stability. G-SPI exhibits the highest disulfide bond content and the best gel properties. Compared with MP gel, the addition of H-SPI, A-SPI, G-SPI, and O-SPI components significantly improved the properties of the gel. Additionally, MP-ASPI gel exhibits the best properties and microstructure. Overall, the four industrial modification effects may impact SPI's structure and gel properties in different ways. A-SPI could be a potential functionality-enhanced soy protein ingredient in comminuted meat products. The present study results will provide a theoretical basis for the industrialized production of SPI.

9.
Foods ; 12(5)2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36900426

ABSTRACT

A cavitation jet can enhance food proteins' functionalities by regulating solvable oxidized soybean protein accumulates (SOSPI). We investigated the impacts of cavitation jet treatment on the emulsifying, structural and interfacial features of soluble soybean protein oxidation accumulate. Findings have shown that radicals in an oxidative environment not only induce proteins to form insoluble oxidative aggregates with a large particle size and high molecular weight, but also attack the protein side chains to form soluble small molecular weight protein aggregates. Emulsion prepared by SOSPI shows worse interface properties than OSPI. A cavitation jet at a short treating time (<6 min) has been shown to break the core aggregation skeleton of soybean protein insoluble aggregates, and insoluble aggregates into soluble aggregates resulting in an increase of emulsion activity (EAI) and constancy (ESI), and a decrease of interfacial tension from 25.15 to 20.19 mN/m. However, a cavitation jet at a long treating time (>6 min) would cause soluble oxidized aggregates to reaggregate through an anti-parallel intermolecular ß-sheet, which resulted in lower EAI and ESI, and a higher interfacial tension (22.44 mN/m). The results showed that suitable cavitation jet treatment could adjust the structural and functional features of SOSPI by targeted regulated transformation between the soluble and insoluble components.

10.
Front Nutr ; 9: 1054326, 2022.
Article in English | MEDLINE | ID: mdl-36505251

ABSTRACT

This paper investigates the effect on the physicochemical and functional properties of soybean protein concentrate (SPC) by using Alcalase protease and high-pressure homogenization (HPH) (0, 20, 40, 60, 80, and 100 MPa) for the combined modification. The results showed that the degree of hydrolysis of SPC was 4.1% and the antigen protein was degraded after Alcalase hydrolysis, when the homogenization pressure (HP) was 6 0Mpa, the particle size of the SPC was the smallest, the zate potential absolute value up to 33.45 mV, the secondary structure has the lowest ß-sheet content, the highest random coil content, and the highest surface hydrophobicity (H0), the size of protein fragments on the microstructure surface is the smallest, the lowest denaturation temperature (T d ) and enthalpy (△H) are 72.59°C and 1.35 J/g, the highest solubility is 80.54%, and the highest water and oil holding capacities are 7.73 g/g and 6.51 g/g, respectively. The best emulsifying activity and emulsifying stability were 43.46 m2/g and 190.35 min, the most even distribution of emulsion droplets. This indicates that the HPH treatment destroys the structure of enzymatic hydrolyzed SPC, changes its physicochemical properties, and improves its functional properties. In this study, SPC was modified by HPH and enzyme combined treatment, in order to improve the functionality and application range of SPC, and provide a theoretical basis for its high-value utilization in the food field.

11.
Ultrason Sonochem ; 88: 106075, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35753139

ABSTRACT

The combination of protein and flavonoids can ameliorate the problems of poor solubility and stability of flavonoids in utilization. In this study, soybean protein isolate pretreated by ultrasonication was selected as the embedding wall material, which was combined with luteolin to form a soybean protein isolate-luteolin nanodelivery system. The complexation effect and structural changes of soybean protein isolate (SPI) and ultrasonic pretreatment (100 W, 200 W, 300 W, 400 W and 500 W) of soybean protein isolate with luteolin (LUT) were compared, as well as the changes in digestion characteristics and antioxidant activity in vitro. The results showed that proper ultrasonic pretreatment increased the encapsulation efficacy, loading amount and solubility to 89.72%, 2.51 µg/mg and 90.56%. Appropriate ultrasonic pretreatment could make the particle size and the absolute value of ζ-potential of SPI-LUT nanodelivery system decrease and increase respectively. The FTIR and fluorescence results show that appropriate ultrasonic pretreatment could reduce α-helix, ß-sheet and random coil, increase ß-turn, and enhance fluorescence quenching. The thermodynamic evaluation results indicate that the ΔG < 0, ΔH > 0 and ΔS > 0, so the interaction of LUT with the protein was spontaneous and mostly governed by hydrophobic interactions. The XRD results show that the LUT was amorphous and completely wrapped by SPI. The DSC results showed that ultrasonic pretreatment could improve the thermal stability of SPI-LUT nanodelivery system to 112.66 ± 1.69 °C. Digestion and antioxidant analysis showed that appropriate ultrasonic pretreatment increased the LUT release rate and DPPH clearance rate of SPI-LUT nanodelivery system to 89.40 % and 55.63 % respectively. This study is a preliminary source for the construction of an SPI nanodelivery system with ultrasound pretreatment and the deep processing and utilization of fat-soluble active substances.


Subject(s)
Luteolin , Soybean Proteins , Biological Availability , Solubility , Soybean Proteins/chemistry , Ultrasonics
12.
Foods ; 11(10)2022 May 16.
Article in English | MEDLINE | ID: mdl-35627001

ABSTRACT

In this study, pea residue reserve insoluble diet fiber (hereinafter referred to as pea fiber) was used as a raw material. The effects of γ-irradiation doses (0, 0.5, 1, 2, 3, and 5 kGy) on the structural properties (main composition, particle size and specific surface area, scanning electron microscope (SEM) microstructure, Fourier transform infrared spectroscopy, and X-ray diffraction) and functional properties (oil-holding capacity, swelling and water-holding capacity, and adsorption properties) of pea fiber were explored. The results show that, when the γ-irradiation dose was 2 kGy, compared with the untreated sample, the contents of cellulose, hemicellulose and lignin in pea fiber decreased by 1.34 ± 0.42%, 2.56 ± 0.03% and 2.02 ± 0.05%, respectively, and the volume particle size of pea fiber decreased by 17.43 ± 2.35 µm. The specific surface area increased by 23.70 ± 2.24 m2/kg and the crystallinity decreased by 7.65%. Pore and irregular particles appeared on the microstructure surface of the pea fiber treated with γ-irradiation. The results of the infrared spectrum showed that the hemicellulose and lignin in pea fiber were destroyed by γ-irradiation. These results indicate that γ-irradiation can significantly affect the structural properties of pea fiber. When the γ-irradiation dose was 2 kGy, the highest oil-holding capacity, swelling capacity and water-holding capacity of pea fiber were 8.12 ± 0.12 g/g, 19.75 ± 0.37 mL/g and 8.35 ± 0.18 g/g, respectively, and the adsorption capacities of sodium nitre, cholesterol and glucose were also the strongest. These results indicate that the functional properties of pea fiber are improved by γ-irradiation. In this study, γ-irradiation technology was used as pretreatment to provide a theoretical basis for the application of pea fiber in food processing.

SELECTION OF CITATIONS
SEARCH DETAIL
...