Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Genomics Proteomics Bioinformatics ; 21(1): 84-96, 2023 02.
Article in English | MEDLINE | ID: mdl-35914737

ABSTRACT

Colorectal cancer (CRC) is one of the most frequently diagnosed cancers and the leading cause of cancer-associated deaths. Epidemiological studies have shown that both genetic and environmental risk factors contribute to the development of CRC. Several metagenomic studies of CRC have identified gut dysbiosis as a fundamental risk factor in the evolution of colorectal malignancy. Although enormous efforts and substantial progresses have been made in understanding the relationship between human gut microbiome and CRC, the precise mechanisms involved remain elusive. Recent data have shown a direct causative role of the gut microbiome in DNA damage, inflammation, and drug resistance in CRC, suggesting that modulation of gut microbiome could act as a powerful tool in CRC prevention and therapy. Here, we provide an overview of the relationship between gut microbiome and CRC, and explore relevant mechanisms of colorectal tumorigenesis. We next highlight the potential of bacterial species as clinical biomarkers, as well as their roles in therapeutic response. Factors limiting the clinical translation of gut microbiome and strategies for resolving current challenges are further discussed.


Subject(s)
Colorectal Neoplasms , Gastrointestinal Microbiome , Microbiota , Humans , Gastrointestinal Microbiome/genetics , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/etiology , Colorectal Neoplasms/therapy , Biomarkers , Carcinogenesis
2.
Article in English | MEDLINE | ID: mdl-36174929

ABSTRACT

The high host genetic background of tissue biopsies hinders the application of shotgun metagenomic sequencing in characterizing the tissue microbiota. We proposed an optimized method that removed host DNA from colon biopsies and examined the effect on metagenomic analysis. Human or mouse colon biopsies were divided into two groups, with one group undergoing host DNA depletion and the other serving as the control. Host DNAs were removed through differential lysis of mammalian and bacterial cells before sequencing. The impact of host DNA depletion on microbiota was compared based on phylogenetic diversity analyses and regression analyses. Removing host DNA enhanced bacterial sequencing depth and improved species discovery, increasing bacterial reads by 2.46 ± 0.20 fold while reducing host reads by 6.80% ± 1.06%. Moreover, 3.40 times more of bacterial species were detected after host DNA depletion. This was confirmed from mouse colon tissues, increasing bacterial reads by 5.46 ± 0.42 fold while decreasing host reads by 10.2% ± 0.83%. Similarly, significantly more species were detected in the mouse colon tissue upon host DNA depletion (P < 0.001). Furthermore, an increased microbial richness was evident in the host DNA-depleted samples compared with non-depleted controls in human colon biopsies and mouse colon tissues (P < 0.001). Our optimized method of host DNA depletion improved the sensitivity of shotgun metagenomic sequencing in bacterial detection in the biopsy, which may yield a more accurate taxonomic profile of the tissue microbiota and identify bacteria that are important for disease initiation or progression.

3.
Oncogene ; 40(16): 2898-2909, 2021 04.
Article in English | MEDLINE | ID: mdl-33742127

ABSTRACT

Molecular-based classifications of gastric cancer (GC) were recently proposed, but few of them robustly predict clinical outcomes. While mutation and expression signature of protein-coding genes were used in previous molecular subtyping methods, the noncoding genome in GC remains largely unexplored. Here, we developed the fast long-noncoding RNA analysis (FLORA) method to study RNA sequencing data of GC cases, and prioritized tumor-specific long-noncoding RNAs (lncRNAs) by integrating clinical and multi-omic data. We uncovered 1235 tumor-specific lncRNAs, based on which three subtypes were identified. The lncRNA-based subtype 3 (L3) represented a subgroup of intestinal GC with worse survival, characterized by prevalent TP53 mutations, chromatin instability, hypomethylation, and over-expression of oncogenic lncRNAs. In contrast, the lncRNA-based subtype 1 (L1) has the best survival outcome, while LINC01614 expression further segregated a subgroup of L1 cases with worse survival and increased chance of developing distal metastasis. We demonstrated that LINC01614 over-expression is an independent prognostic factor in L1 and network-based functional prediction implicated its relevance to cell migration. Over-expression and CRISPR-Cas9-guided knockout experiments further validated the functions of LINC01614 in promoting GC cell growth and migration. Altogether, we proposed a lncRNA-based molecular subtype of GC that robustly predicts patient survival and validated LINC01614 as an oncogenic lncRNA that promotes GC proliferation and migration.


Subject(s)
Biomarkers, Tumor/metabolism , Gene Expression Profiling/methods , RNA, Long Noncoding/metabolism , Stomach Neoplasms/genetics , Humans , Oncogenes , Prognosis , Stomach Neoplasms/mortality , Stomach Neoplasms/pathology
4.
J Exp Clin Cancer Res ; 40(1): 67, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33588913

ABSTRACT

BACKGROUND: Currently, tRNA-derived small RNAs (tsRNAs) are recognized as a novel and potential type of non-coding RNAs (ncRNAs), which participate in various cellular processes and play an essential role in cancer progression. However, tsRNAs involvement in colorectal cancer (CRC) progression remains unclear. METHODS: Sequencing analyses were performed to explore the tsRNAs with differential expression in CRC. Gain- and loss-of functions of 5'tiRNA-His-GTG were performed in CRC cells and xenograft tumor to discover its role in the progression of CRC. Hypoxia culture and hypoxia inducible factor 1 subunit alpha (HIF1α) inhibitors were performed to uncover the biogenesis of 5'tiRNA-His-GTG. The regulation of 5'tiRNA-His-GTG for large tumor suppressor kinase 2 (LATS2) were identified by luciferase reporter assay, western blot, and rescue experiments. RESULTS: Here, our study uncovered the profile of tsRNAs in human CRC tissues and confirmed a specific tRNA half, 5'tiRNA-His-GTG, is upregulated in CRC tissues. Then, in vitro and in vivo experiments revealed the oncogenic role of 5'tiRNA-His-GTG in CRC and found that targeting 5'tiRNA-His-GTG can induce cell apoptosis. Mechanistically, the generation of 5'tiRNA-His-GTG seems to be a responsive process of tumor hypoxic microenvironment, and it is regulated via the HIF1α/angiogenin (ANG) axis. Remarkably, LATS2 was found to be an important and major target of 5'tiRNA-His-GTG, which renders 5'tiRNA-His-GTG to "turn off" hippo signaling pathway and finally promotes the expression of pro-proliferation and anti-apoptosis related genes. CONCLUSIONS: In summary, the findings revealed a specific 5'tiRNA-His-GTG-engaged pathway in CRC progression and provided clues to design a novel therapeutic target in CRC.


Subject(s)
Colorectal Neoplasms/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Protein Serine-Threonine Kinases/metabolism , RNA, Transfer/genetics , Tumor Suppressor Proteins/metabolism , Animals , Apoptosis , Cell Hypoxia , Cell Proliferation , Colorectal Neoplasms/pathology , Disease Progression , Humans , Male , Mice , Mice, Nude , Transfection
5.
Gut ; 69(10): 1867-1876, 2020 10.
Article in English | MEDLINE | ID: mdl-32759302

ABSTRACT

The gut microbiota has been implicated in cancer and shown to modulate anticancer drug efficacy. Altered gut microbiota is associated with resistance to chemo drugs or immune checkpoint inhibitors (ICIs), whereas supplementation of distinct bacterial species restores responses to the anticancer drugs. Accumulating evidence has revealed the potential of modulating the gut microbiota to enhance the efficacy of anticancer drugs. Regardless of the valuable findings by preclinical models and clinical data of patients with cancer, a more thorough understanding of the interactions of the microbiota with cancer therapy helps researchers identify novel strategy for cancer prevention, stratify patients for more effective treatment and reduce treatment complication. In this review, we discuss the scientific evidence on the role of gut microbiota in cancer treatment, and highlight the latest knowledge and technologies leveraged to target specific bacteria that contribute to tumourigenesis. First, we provide an overview of the role of the gut microbiota in cancer, establishing the links between bacteria, inflammation and cancer treatment. Second, we highlight the mechanisms used by distinct bacterial species to modulate cancer growth, immune responses, as well as the efficacy of chemotherapeutic drugs and ICIs. Third, we demonstrate various approaches to modulate the gut microbiota and their potential in translational research. Finally, we discuss the limitations of current microbiome research in the context of cancer treatment, ongoing efforts to overcome these challenges and future perspectives.


Subject(s)
Antineoplastic Agents/pharmacology , Gastrointestinal Microbiome/physiology , Neoplasms , Dysbiosis/immunology , Humans , Neoplasms/drug therapy , Neoplasms/immunology , Neoplasms/microbiology , Treatment Outcome
6.
Microbiome ; 8(1): 108, 2020 07 16.
Article in English | MEDLINE | ID: mdl-32678024

ABSTRACT

BACKGROUND: Altered microbiome composition and aberrant promoter hypermethylation of tumor suppressor genes (TSGs) are two important hallmarks of colorectal cancer (CRC). Here we performed concurrent 16S rRNA gene sequencing and methyl-CpG binding domain-based capture sequencing in 33 tissue biopsies (5 normal colonic mucosa tissues, 4 pairs of adenoma and adenoma-adjacent tissues, and 10 pairs of CRC and CRC-adjacent tissues) to identify significant associations between TSG promoter hypermethylation and CRC-associated bacteria, followed by functional validation of the methylation-associated bacteria. RESULTS: Fusobacterium nucleatum and Hungatella hathewayi were identified as the top two methylation-regulating bacteria. Targeted analysis on bona fide TSGs revealed that H. hathewayi and Streptococcus spp. significantly correlated with CDX2 and MLH1 promoter hypermethylation, respectively. Mechanistic validation with cell-line and animal models revealed that F. nucleatum and H. hathewayi upregulated DNA methyltransferase. H. hathewayi inoculation also promoted colonic epithelial cell proliferation in germ-free and conventional mice. CONCLUSION: Our integrative analysis revealed previously unknown epigenetic regulation of TSGs in host cells through inducing DNA methyltransferase by F. nucleatum and H. hathewayi, and established the latter as CRC-promoting bacteria. Video abstract.


Subject(s)
Clostridiaceae/pathogenicity , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , DNA Methylation , Epithelial Cells/metabolism , Fusobacterium nucleatum/pathogenicity , Genes, Tumor Suppressor , Promoter Regions, Genetic/genetics , Aged , Animals , Epigenesis, Genetic , Epigenome , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged , RNA, Ribosomal, 16S/genetics
7.
J Cell Physiol ; 235(2): 683-690, 2020 02.
Article in English | MEDLINE | ID: mdl-31286522

ABSTRACT

tRNA-derived stress-induced RNAs (tiRNAs), important components of tRNA-derived fragments, are gaining popularity for their functions as small noncoding RNAs involved in cancer progression. Under cellular stress, tiRNAs are generated when mature tRNA is specifically cleaved by angiogenin and suggested to act as transducers or effectors involved in cellular stress responses. tiRNAs facilitate cells to respond to stresses mainly via reprogramming translation, inhibiting apoptosis, degrading mRNA, and generating stress granules. This review introduces the cellular biogenesis, molecular mechanisms, and biological roles of tiRNAs in stress response and disease regulation. A better understanding of their roles in regulating cancer may provide novel biomarkers or therapeutic targets for diagnosis and treatment.


Subject(s)
RNA, Small Untranslated/genetics , RNA, Transfer/metabolism , Stress, Physiological/genetics , Humans , Neoplasms/genetics , RNA, Transfer/genetics , Signal Transduction/genetics , Stress, Physiological/physiology
8.
Endocrinology ; 158(3): 477-489, 2017 03 01.
Article in English | MEDLINE | ID: mdl-27967239

ABSTRACT

Bone metastasis is a deadly consequence of cancers, in which osteoclast forms a vicious cycle with tumor cells. Bone metastasis attenuation by clinical usage of osteoclast inhibitors and in our osteopetrotic mouse genetic models with ß-catenin constitutive activation or peroxisome proliferator-activated receptor γ deficiency fully support the important role of osteoclast in driving the bone metastatic niche. However, the mechanisms for this "partnership in crime" are underexplored. Here we show that osteoclasts reprogram their lipid secretion to support cancer cells. Metabolomic profiling reveals elevated prometastatic arachidonic acid (AA) but reduced antimetastatic lysophosphatidylcholines (LPCs). This shift in lipid osteoclastokines synergistically stimulates tumor cell proliferation, migration, survival, and expression of prometastatic genes. Pharmacologically, combined treatment with LPCs and BW-755C, an inhibitor of AA signaling via blocking lipoxygenase and cyclooxygenase, impedes breast cancer bone metastasis. Our findings elucidate key paracrine mechanisms for the osteoclast-cancer vicious cycle and uncover important therapeutic targets for bone metastasis.


Subject(s)
Bone Neoplasms/secondary , Breast Neoplasms/pathology , Cytokines/metabolism , Lipid Metabolism , Osteoclasts/physiology , Animals , Arachidonic Acid/metabolism , Cell Movement , Female , Lysophosphatidylcholines , Metabolomics , Mice, Knockout , Mice, Nude , Neoplasm Metastasis , Neoplasm Transplantation , Osteogenesis , Paracrine Communication
9.
Elife ; 52016 10 03.
Article in English | MEDLINE | ID: mdl-27692066

ABSTRACT

Tumor-associated macrophage (TAM) significantly contributes to cancer progression. Human cancer is enhanced by PPARγ loss-of-function mutations, but inhibited by PPARγ agonists such as TZD diabetes drugs including rosiglitazone. However, it remains enigmatic whether and how macrophage contributes to PPARγ tumor-suppressive functions. Here we report that macrophage PPARγ deletion in mice not only exacerbates mammary tumor development but also impairs the anti-tumor effects of rosiglitazone. Mechanistically, we identify Gpr132 as a novel direct PPARγ target in macrophage whose expression is enhanced by PPARγ loss but repressed by PPARγ activation. Functionally, macrophage Gpr132 is pro-inflammatory and pro-tumor. Genetic Gpr132 deletion not only retards inflammation and cancer growth but also abrogates the anti-tumor effects of PPARγ and rosiglitazone. Pharmacological Gpr132 inhibition significantly impedes mammary tumor malignancy. These findings uncover macrophage PPARγ and Gpr132 as critical TAM modulators, new cancer therapeutic targets, and essential mediators of TZD anti-cancer effects.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Cycle Proteins/antagonists & inhibitors , Macrophages/drug effects , Mammary Neoplasms, Experimental/pathology , PPAR gamma/agonists , Receptors, G-Protein-Coupled/antagonists & inhibitors , Thiazolidinediones/pharmacology , Animals , Gene Knockout Techniques , Mammary Neoplasms, Experimental/drug therapy , Mice , Mice, Knockout , PPAR gamma/genetics , Rosiglitazone
10.
Proc Natl Acad Sci U S A ; 107(33): 14673-8, 2010 Aug 17.
Article in English | MEDLINE | ID: mdl-20679203

ABSTRACT

In most aphid species, facultative parthenogenetic reproduction allows rapid growth and formation of large single-genotype colonies. Upon predator attack, individual aphids emit an alarm pheromone to warn the colony of this danger. (E)-beta-farnesene (EBF) is the predominant constituent of the alarm pheromone in Myzus persicae (green peach aphid) and many other aphid species. Continuous exposure to alarm pheromone in aphid colonies raised on transgenic Arabidopsis thaliana plants that produce EBF leads to habituation within three generations. Whereas naive aphids are repelled by EBF, habituated aphids show no avoidance response. Similarly, individual aphids from the habituated colony can revert back to being EBF-sensitive in three generations, indicating that this behavioral change is not caused by a genetic mutation. Instead, DNA microarray experiments comparing gene expression in naive and habituated aphids treated with EBF demonstrate an almost complete desensitization in the transcriptional response to EBF. Furthermore, EBF-habituated aphids show increased progeny production relative to EBF-responsive aphids, with or without EBF treatment. Although both naive and habituated aphids emit EBF upon damage, EBF-responsive aphids have a higher survival rate in the presence of a coccinellid predator (Hippodamia convergens), and thus outperform habituated aphids that do not show an avoidance response. These results provide evidence that aphid perception of conspecific alarm pheromone aids in predator avoidance and thereby bestows fitness benefits in survivorship and fecundity. Therefore, although habituated M. persicae produce more progeny, EBF-emitting transgenic plants may have practical applications in agriculture as a result of increased predation of habituated aphids.


Subject(s)
Aphids/genetics , Gene Expression Regulation/drug effects , Pheromones/pharmacology , Sesquiterpenes/pharmacology , Animals , Aphids/physiology , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/parasitology , Behavior, Animal/physiology , Gas Chromatography-Mass Spectrometry , Gene Expression Profiling , Habituation, Psychophysiologic/physiology , Host-Parasite Interactions , Molecular Structure , Oligonucleotide Array Sequence Analysis , Pheromones/chemistry , Pheromones/metabolism , Plants, Genetically Modified , Sesquiterpenes/chemistry , Sesquiterpenes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...