Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 151
Filter
1.
Cell Mol Life Sci ; 81(1): 205, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38703204

ABSTRACT

BACKGROUND: Exposure to chronic psychological stress (CPS) is a risk factor for thrombotic cardiocerebrovascular diseases (CCVDs). The expression and activity of the cysteine cathepsin K (CTSK) are upregulated in stressed cardiovascular tissues, and we investigated whether CTSK is involved in chronic stress-related thrombosis, focusing on stress serum-induced endothelial apoptosis. METHODS AND RESULTS: Eight-week-old wild-type male mice (CTSK+/+) randomly divided to non-stress and 3-week restraint stress groups received a left carotid artery iron chloride3 (FeCl3)-induced thrombosis injury for biological and morphological evaluations at specific timepoints. On day 21 post-stress/injury, the stress had enhanced the arterial thrombi weights and lengths, in addition to harmful alterations of plasma ADAMTS13, von Willebrand factor, and plasminogen activation inhibitor-1, plus injured-artery endothelial loss and CTSK protein/mRNA expression. The stressed CTSK+/+ mice had increased levels of injured arterial cleaved Notch1, Hes1, cleaved caspase8, matrix metalloproteinase-9/-2, angiotensin type 1 receptor, galactin3, p16IN4A, p22phox, gp91phox, intracellular adhesion molecule-1, TNF-α, MCP-1, and TLR-4 proteins and/or genes. Pharmacological and genetic inhibitions of CTSK ameliorated the stress-induced thrombus formation and the observed molecular and morphological changes. In cultured HUVECs, CTSK overexpression and silencing respectively increased and mitigated stressed-serum- and H2O2-induced apoptosis associated with apoptosis-related protein changes. Recombinant human CTSK degraded γ-secretase substrate in a dose-dependent manor and activated Notch1 and Hes1 expression upregulation. CONCLUSIONS: CTSK appeared to contribute to stress-related thrombosis in mice subjected to FeCl3 stress, possibly via the modulation of vascular inflammation, oxidative production and apoptosis, suggesting that CTSK could be an effective therapeutic target for CPS-related thrombotic events in patients with CCVDs.


Subject(s)
Apoptosis , Cathepsin K , Chlorides , Disease Models, Animal , Ferric Compounds , Thrombosis , Animals , Humans , Male , Mice , ADAMTS13 Protein/metabolism , ADAMTS13 Protein/genetics , Cathepsin K/metabolism , Cathepsin K/genetics , Chlorides/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Mice, Inbred C57BL , Mice, Knockout , Plasminogen Activator Inhibitor 1/metabolism , Plasminogen Activator Inhibitor 1/genetics , Stress, Psychological/complications , Stress, Psychological/metabolism , Thrombosis/metabolism , Thrombosis/pathology , Transcription Factor HES-1/metabolism , Transcription Factor HES-1/genetics
2.
FASEB J ; 38(10): e23684, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38795334

ABSTRACT

Exposure to chronic psychosocial stress is a risk factor for metabolic disorders. Because dipeptidyl peptidase-4 (DPP4) and cysteinyl cathepsin K (CTSK) play important roles in human pathobiology, we investigated the role(s) of DPP4 in stress-related adipocyte differentiation, with a focus on the glucagon-like peptide-1 (GLP-1)/adiponectin-CTSK axis in vivo and in vitro. Plasma and inguinal adipose tissue from non-stress wild-type (DPP4+/+), DPP4-knockout (DPP4-/-) and CTSK-knockout (CTSK-/-) mice, and stressed DPP4+/+, DPP4-/-, CTSK-/-, and DPP4+/+ mice underwent stress exposure plus GLP-1 receptor agonist exenatide loading for 2 weeks and then were analyzed for stress-related biological and/or morphological alterations. On day 14 under chronic stress, stress decreased the weights of adipose tissue and resulted in harmful changes in the plasma levels of DPP4, GLP-1, CTSK, adiponectin, and tumor necrosis factor-α proteins and the adipose tissue levels of CTSK, preadipocyte factor-1, fatty acid binding protein-4, CCAAT/enhancer binding protein-α, GLP-1 receptor, peroxisome proliferator-activated receptor-γ, perilipin2, secreted frizzled-related protein-4, Wnt5α, Wnt11 and ß-catenin proteins and/or mRNAs as well as macrophage infiltration in adipose tissue; these changes were rectified by DPP4 deletion. GLP-1 receptor activation and CTSK deletion mimic the adipose benefits of DPP4 deficiency. In vitro, CTSK silencing and overexpression respectively prevented and facilitated stress serum and oxidative stress-induced adipocyte differentiation accompanied with changes in the levels of pref-1, C/EBP-α, and PPAR-γ in 3T3-L1 cells. Thus, these findings indicated that increased DPP4 plays an essential role in stress-related adipocyte differentiation, possibly through a negative regulation of GLP-1/adiponectin-CTSK axis activation in mice under chronic stress conditions.


Subject(s)
Adipocytes , Adiponectin , Cathepsin K , Cell Differentiation , Dipeptidyl Peptidase 4 , Glucagon-Like Peptide 1 , Mice, Knockout , Animals , Mice , Adiponectin/metabolism , Glucagon-Like Peptide 1/metabolism , Adipocytes/metabolism , Dipeptidyl Peptidase 4/metabolism , Dipeptidyl Peptidase 4/genetics , Cathepsin K/metabolism , Cathepsin K/genetics , Male , Mice, Inbred C57BL , Stress, Psychological/metabolism , 3T3-L1 Cells , Exenatide/pharmacology , PPAR gamma/metabolism , Adipogenesis
3.
PLoS One ; 19(5): e0303758, 2024.
Article in English | MEDLINE | ID: mdl-38768136

ABSTRACT

Nitric oxide (NO) promotes angiogenesis via various mechanisms; however, the effective transmission of NO in ischemic diseases is unclear. Herein, we tested whether NO-releasing nanofibers modulate therapeutic angiogenesis in an animal hindlimb ischemia model. Male wild-type C57BL/6 mice with surgically-induced hindlimb ischemia were treated with NO-releasing 3-methylaminopropyltrimethoxysilane (MAP3)-derived or control (i.e., non-NO-releasing) nanofibers, by applying them to the wound for 20 min, three times every two days. The amount of NO from the nanofiber into tissues was assessed by NO fluorometric assay. The activity of cGMP-dependent protein kinase (PKG) was determined by western blot analysis. Perfusion ratios were measured 2, 4, and 14 days after inducing ischemia using laser doppler imaging. On day 4, Immunohistochemistry (IHC) with F4/80 and gelatin zymography were performed. IHC with CD31 was performed on day 14. To determine the angiogenic potential of NO-releasing nanofibers, aorta-ring explants were treated with MAP3 or control fiber for 20 min, and the sprout lengths were examined after 6 days. As per either LDPI (Laser doppler perfusion image) ratio or CD31 capillary density measurement, angiogenesis in the ischemic hindlimb was improved in the MAP3 nanofiber group; further, the total nitrate/nitrite concentration in the adduct muscle increased. The number of macrophage infiltrations and matrix metalloproteinase-9 (MMP-9) activity decreased. Vasodilator-stimulated phosphoprotein (VASP), one of the major substrates for PKG, increased phosphorylation in the MAP3 group. MAP3 nanofiber or NO donor SNAP (s-nitroso-n-acetyl penicillamine)-treated aortic explants showed enhanced sprouting in an ex vivo aortic ring assay, which was partially abrogated by KT5823, a potent inhibitor of PKG. These findings suggest that the novel NO-releasing nanofiber, MAP3 activates PKG and promotes therapeutic angiogenesis in response to hindlimb ischemia.


Subject(s)
Cyclic GMP-Dependent Protein Kinases , Hindlimb , Ischemia , Mice, Inbred C57BL , Nanofibers , Neovascularization, Physiologic , Nitric Oxide , Animals , Nanofibers/chemistry , Male , Nitric Oxide/metabolism , Ischemia/drug therapy , Ischemia/metabolism , Cyclic GMP-Dependent Protein Kinases/metabolism , Mice , Hindlimb/blood supply , Neovascularization, Physiologic/drug effects , Matrix Metalloproteinase 9/metabolism , Phosphoproteins/metabolism , Microfilament Proteins/metabolism , Cell Adhesion Molecules
5.
Heliyon ; 10(3): e24720, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38333869

ABSTRACT

Drug-eluting stents (DES) and dual antiplatelet regimens have significantly improved the clinical management of ischemic heart disease; however, the drugs loaded with DES in clinical practice are mostly paclitaxel or rapamycin derivatives, which target symptoms of post implantation proliferation and inflammation, leading to delayed re-endothelialization and neo-atherosclerosis. Along with the treatments already in place, there is a need for novel strategies to lessen the negative clinical outcomes of DES delays as well as a need for greater understanding of their pathobiological mechanisms. This review concentrates on the function of cathepsins (Cats) in the inflammatory response and granulation tissue formation that follow Cat-induced damage to the vasculature scaffold, as well as the functions of Cats in intimal hyperplasia, which is characterized by the migration and proliferation of smooth muscle cells, and endothelial denudation, re-endothelialization, and/or neo-endothelialization. Additionally, Cats can alter essential neointima formation and immune response inside scaffolds, and if Cats are properly controlled in vivo, they may improve scaffold biocompatibility. This unique profile of functions could lead to an original concept for a cathepsin-based coronary intervention treatment as an adjunct to stent placement.

6.
Clin Case Rep ; 12(2): e8460, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38314185

ABSTRACT

The patient's vasospastic variant angina manifested as syncope with asymptomatic ischemic episodes, and repeated 24-h dynamic electrocardiogram and coronary angiography examinations combined with coronary provocation spasm tests were necessary for its diagnosis and management.

8.
Cell Mol Life Sci ; 80(9): 254, 2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37589754

ABSTRACT

Exposure to chronic psychological stress (CPS) is an intractable risk factor for inflammatory and metabolic diseases. Lysosomal cysteinyl cathepsins play an important role in human pathobiology. Given that cathepsin S (CTSS) is upregulated in the stressed vascular and adipose tissues, we investigated whether CTSS participates in chronic stress-induced skeletal muscle mass loss and dysfunction, with a special focus on muscle protein metabolic imbalance and apoptosis. Eight-week-old male wildtype (CTSS+/+) and CTSS-knockout (CTSS-/-) mice were randomly assigned to non-stress and variable-stress groups. CTSS+/+ stressed mice showed significant losses of muscle mass, dysfunction, and fiber area, plus significant mitochondrial damage. In this setting, stressed muscle in CTSS+/+ mice presented harmful alterations in the levels of insulin receptor substrate 2 protein content (IRS-2), phospho-phosphatidylinositol 3-kinase, phospho-protein kinase B, and phospho-mammalian target of rapamycin, forkhead box-1, muscle RING-finger protein-1 protein, mitochondrial biogenesis-related peroxisome proliferator-activated receptor-γ coactivator-α, and apoptosis-related B-cell lymphoma 2 and cleaved caspase-3; these alterations were prevented by CTSS deletion. Pharmacological CTSS inhibition mimics its genetic deficiency-mediated muscle benefits. In C2C12 cells, CTSS silencing prevented stressed serum- and oxidative stress-induced IRS-2 protein reduction, loss of the myotube myosin heavy chain content, and apoptosis accompanied by a rectification of investigated molecular harmful changes; these changes were accelerated by CTSS overexpression. These findings demonstrated that CTSS plays a role in IRS-2-related protein anabolism and catabolism and cell apoptosis in stress-induced muscle wasting, suggesting a novel therapeutic strategy for the control of chronic stress-related muscle disease in mice under our experimental conditions by regulating CTSS activity.


Subject(s)
Cathepsins , Muscular Atrophy , Stress, Physiological , Animals , Male , Mice , Adipose Tissue , Muscles , Muscular Atrophy/genetics
9.
FASEB J ; 37(8): e23086, 2023 08.
Article in English | MEDLINE | ID: mdl-37428652

ABSTRACT

Cathepsin S (CTSS) is a widely expressed cysteinyl protease that has garnered attention because of its enzymatic and non-enzymatic functions under inflammatory and metabolic pathological conditions. Here, we examined whether CTSS participates in stress-related skeletal muscle mass loss and dysfunction, focusing on protein metabolic imbalance. Eight-week-old male wildtype (CTSS+/+ ) and CTSS-knockout (CTSS-/- ) mice were randomly assigned to non-stress and variable-stress groups for 2 weeks, and then processed for morphological and biochemical studies. Compared with non-stressed mice, stressed CTSS+/+ mice showed significant losses of muscle mass, muscle function, and muscle fiber area. In this setting, the stress-induced harmful changes in the levels of oxidative stress-related (gp91phox and p22phox ,), inflammation-related (SDF-1, CXCR4, IL-1ß, TNF-α, MCP-1, ICAM-1, and VCAM-1), mitochondrial biogenesis-related (PPAR-γ and PGC-1α) genes and/or proteins and protein metabolism-related (p-PI3K, p-Akt, p-FoxO3α, MuRF-1, and MAFbx1) proteins; and these alterations were rectified by CTSS deletion. Metabolomic analysis revealed that stressed CTSS-/- mice exhibited a significant improvement in the levels of glutamine metabolism pathway products. Thus, these findings indicated that CTSS can control chronic stress-related skeletal muscle atrophy and dysfunction by modulating protein metabolic imbalance, and thus CTSS was suggested to be a promising new therapeutic target for chronic stress-related muscular diseases.


Subject(s)
Muscular Diseases , Oxidative Stress , Mice , Male , Animals , Muscle Fibers, Skeletal/metabolism , Cathepsins/metabolism , Muscular Diseases/metabolism
10.
Arterioscler Thromb Vasc Biol ; 43(7): e238-e253, 2023 07.
Article in English | MEDLINE | ID: mdl-37128920

ABSTRACT

BACKGROUND: Exposure to chronic psychological stress is a risk factor for metabolic cardiovascular disease. Given the important role of lysosomal CTSS (cathepsin S) in human pathobiology, we examined the role of CTSS in stress-related thrombosis, focusing on inflammation, oxidative stress, and apoptosis. METHODS: Six-week-old wild-type mice (CTSS+/+) and CTSS-deficient mice (CTSS-/-) randomly assigned to nonstress and 2-week immobilization stress groups underwent iron chloride3 (FeCl3)-induced carotid thrombosis surgery for morphological and biochemical studies. RESULTS: On day 14 poststress/surgery, stress had increased the lengths and weights of thrombi in the CTSS+/+ mice, plus harmful changes in the levels of PAI-1 (plasminogen activation inhibitor-1), ADAMTS13 (a disintegrin and metalloproteinase with thrombospondin type 13 motifs), and vWF (von Willebrand factor) and arterial tissue CTSS expression. Compared to the nonstressed CTSS+/+ mice, the stressed CTSS-/- mice had decreased levels of PAI-1, vWF, TNF (tumor necrosis factor)-α, interleukin-1ß, toll-like receptor-4, cleaved-caspase 3, cytochrome c, p16INK4A, gp91phox, p22phox, ICAM-1 (intercellular adhesion molecule-1), MCP-1 (monocyte chemoattractant protein-1), MyD88 (myeloid differentiation primary response 88), and MMP (matrix metalloproteinase)-2/-9 and increased levels of ADAMTS13, SOD (superoxide dismutase)-1/-2, eNOS (endothelial NO synthase), p-Akt (phospho-protein kinase B), Bcl-2 (B-cell lymphoma-2), p-GSK3α/ß (phospho-glycogen synthase kinases alpha and beta), and p-Erk1/2 (phospho-extracellular signal-regulated kinase 1 and 2) mRNAs and/or proteins. CTSS deletion also reduced the arterial thrombus area and endothelial loss. A pharmacological inhibition of CTSS exerted a vasculoprotective action. In vitro, CTSS silencing and overexpression, respectively, reduced and increased the stressed serum and oxidative stress-induced apoptosis of human umbilical vein endothelial cells, and they altered apoptosis-related proteins. CONCLUSIONS: CTSS inhibition appeared to improve the stress-related thrombosis in mice that underwent FeCl3-induction surgery, possibly by reducing vascular inflammation, oxidative stress, and apoptosis. CTSS could thus become a candidate therapeutic target for chronic psychological stress-related thrombotic events in metabolic cardiovascular disease.


Subject(s)
Cardiovascular Diseases , Carotid Artery Thrombosis , Thrombosis , Mice , Humans , Animals , von Willebrand Factor/metabolism , Plasminogen Activator Inhibitor 1/genetics , Thrombosis/etiology , Thrombosis/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Inflammation/pathology
11.
Cell Biosci ; 13(1): 91, 2023 May 19.
Article in English | MEDLINE | ID: mdl-37202785

ABSTRACT

Cysteinyl cathepsins (CTSs) are widely known to have a proteolysis function that mediates recycling of unwanted proteins in endosomes and lysosomes, and investigation of CTSs has greatly improved with advances in live-imaging techniques both in vivo and in vitro, leading to three key findings. (1) CTSs are relocated from the lysosomes to other cellular spaces (i.e., cytosol, nucleus, nuclear membrane, plasma membrane, and extracellular milieu). (2) In addition to acidic cellular compartments, CTSs also exert biological activity in neutral environments. (3) CTSs also exert multiple nontraditional functions in, for example, extracellular matrix metabolism, cell signaling transduction, protein processing/trafficking, and cellular events. Various stimuli regulate the expression and activities of CTSs in vivo and vitro-e.g., inflammatory cytokines, oxidative stress, neurohormones, and growth factors. Accumulating evidence has confirmed the participation of CTSs in vascular diseases characterized by atherosclerosis, plaque rupture, thrombosis, calcification, aneurysm, restenosis/in-stent-restenosis, and neovasel formation. Circulating and tissue CTSs are promising as biomarkers and as a diagnostic imaging tool in patients with atherosclerosis-based cardiovascular disease (ACVD), and pharmacological interventions with their specific and non-specific inhibitors, and cardiovascular drugs might have potential for the therapeutic targeting of CTSs in animals. This review focuses on the update findings on CTS biology and the involvement of CTSs in the initiation and progression of ACVD and discusses the potential use of CTSs as biomarkers and small-molecule targets to prevent deleterious nontraditional functions in ACVD.

12.
Cell Signal ; 103: 110531, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36417977

ABSTRACT

Cathepsins can be found in the extracellular space, cytoplasm, and nucleus. It was initially suspected that the primary physiological function of the cathepsins was to break down intracellular protein, and that they also had a role in pathological processes including inflammation and apoptosis. However, the many actions of cathepsins outside the cell and their complicated biological impacts have garnered much interest. Cathepsins play significant roles in a number of illnesses by regulating parenchymal cell proliferation, cell migration, viral invasion, inflammation, and immunological responses through extracellular matrix remodeling, signaling disruption, leukocyte recruitment, and cell adhesion. In this review, we outline the physiological roles of cathepsins in the extracellular space, the crucial pathological functions performed by cathepsins in illnesses, and the recent breakthroughs in the detection and therapy of specific inhibitors and fluorescent probes in associated dysfunction.


Subject(s)
Cathepsins , Extracellular Space , Proteolysis , Humans , Cathepsins/metabolism , Extracellular Matrix/enzymology , Extracellular Matrix/metabolism , Extracellular Space/enzymology , Inflammation/enzymology
13.
J Cachexia Sarcopenia Muscle ; 13(6): 3078-3090, 2022 12.
Article in English | MEDLINE | ID: mdl-36058630

ABSTRACT

BACKGROUND: Young bone marrow transplantation (YBMT) has been shown to stimulate vascular regeneration in pathological conditions, including ageing. Here, we investigated the benefits and mechanisms of the preventive effects of YBMT on loss of muscle mass and function in a senescence-associated mouse prone 10 (SAMP10) model, with a special focus on the role of growth differentiation factor 11 (GDF-11). METHODS: Nine-week-old male SAMP10 mice were randomly assigned to a non-YBMT group (n = 6) and a YBMT group (n = 7) that received the bone marrow of 8-week-old C57BL/6 mice. RESULTS: Compared to the non-YBMT mice, the YBMT mice showed the following significant increases (all P < 0.05 in 6-7 mice): endurance capacity (>61.3%); grip strength (>37.9%), percentage of slow myosin heavy chain fibres (>14.9-15.9%). The YBMT also increased the amounts of proteins or mRNAs for insulin receptor substrate 1, p-Akt, p-extracellular signal-regulated protein kinase1/2, p-mammalian target of rapamycin, Bcl-2, peroxisom proliferator-activated receptor-γ coactivator (PGC-1α), plus cytochrome c oxidase IV and the numbers of proliferating cells (n = 5-7, P < 0.05) and CD34+/integrin-α7+ muscle stem cells (n = 5-6, P < 0.05). The YMBT significantly decreased the levels of gp91phox, caspase-9 proteins and apoptotic cells (n = 5-7, P < 0.05) in both muscles; these beneficial changes were diminished by the blocking of GDF-11 (n = 5-6, P < 0.05). An administration of mouse recombinant GDF-11 improved the YBMT-mediated muscle benefits (n = 5-6, P < 0.05). Cell therapy with young bone marrow from green fluorescent protein (GFP) transgenic mice exhibited GFP+ myofibres in aged muscle tissues. CONCLUSIONS: These findings suggest that YBMT can prevent muscle wasting and dysfunction by mitigating apoptosis and proliferation via a modulation of GDF-11 signalling and mitochondrial dysfunction in SAMP10 mice.


Subject(s)
Bone Marrow Transplantation , Muscles , Mice , Animals , Male , Mice, Inbred C57BL , Muscles/metabolism , Muscular Atrophy/pathology , Aging/physiology , Disease Models, Animal , Mice, Transgenic , Mammals
15.
Medicine (Baltimore) ; 101(28): e29839, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35839036

ABSTRACT

The aim was to investigate the circadian and seasonal variation of acute myocardial infarction (AMI). Clinical data of 3867 AMI patients hospitalized from November 2010 to October 2019 in the Border Yanbian Minority Autonomous Prefecture, China were collected, and 3158 patients with definite AMI onset times were analyzed. The clinical data analyzed included the time of onset, nationality, age, laboratory data. We divided the patients into 4 groups based on the timepoint of their AMI onsets: 00:00-05:59, 06:00-11:59, 12:00-17:59, and 18:00-23:59. We also divided the patients based on nationality: Chinese Korean and Han groups. We observed that there is a circadian rhythm in the incidence of AMI, and the peak of AMI is in the morning (7:00-9:00). Unexpectedly, the incidence of AMI was significantly lower in the cold winter than that of other 3 warm seasons (P < 0.01) and the peak of AMI presented at the months of the large contrast between day and night temperature difference (over 20°C) like May of Spring and October of Fall. Finally, there was no difference in circadian rhythm between Chinese Korean and Han, although these groups differed in age, body mass index, and the inflammatory cell level. These findings have shown a different seasonal and circadian variation in onset of AMI. Further studies are required to determine the pathophysiological mechanism(s) underlying these differences and to guide prevention of AMI for reducing its mortality and disability.


Subject(s)
Myocardial Infarction , Circadian Rhythm , Climate , Humans , Incidence , Myocardial Infarction/epidemiology , Myocardial Infarction/etiology , Seasons
16.
Stem Cell Res Ther ; 13(1): 226, 2022 06 03.
Article in English | MEDLINE | ID: mdl-35659361

ABSTRACT

BACKGROUND: Skeletal muscle mass and function losses in aging individuals are associated with quality of life deterioration and disability. Mesenchymal stromal cells exert immunomodulatory and anti-inflammatory effects and could yield beneficial effects in aging-related degenerative disease. METHODS AND RESULTS: We investigated the efficacy of umbilical cord-derived mesenchymal stromal cells (UC-MSCs) on sarcopenia-related skeletal muscle atrophy and dysfunction in senescence-accelerated mouse prone 10 (SAMP10) mice. We randomly assigned 24-week-old male SAMP10 mice to a UC-MSC treatment group and control group. At 12 weeks post-injection, the UC-MSC treatment had ameliorated sarcopenia-related muscle changes in performance, morphological structures, and mitochondria biogenesis, and it enhanced the amounts of proteins or mRNAs for myosin heavy chain, phospho-AMP-activated protein kinase, phospho-mammalian target of rapamycin, phospho-extracellular signal-regulated kinase1/2, peroxisome proliferator-activated receptor-γ coactivator, GLUT-4, COX-IV, and hepatocyte growth factor in both gastrocnemius and soleus muscles, and it reduced the levels of proteins or mRNAs for cathepsin K, cleaved caspase-3/-8, tumor necrosis factor-α, monocyte chemoattractant protein-1, and gp91phox mRNAs. The UC-MSC treatment retarded mitochondria damage, cell apoptosis, and macrophage infiltrations, and it enhanced desmin/laminin expression and proliferating and CD34+/Integrin α7+ cells in both types of skeletal muscle of the SAMP10 mice. In vitro, we observed increased levels of HGF, PAX-7, and MoyD mRNAs at the 4th passage of UC-MSCs. CONCLUSIONS: Our results suggest that UC-MSCs can improve sarcopenia-related skeletal muscle atrophy and dysfunction via anti-apoptosis, anti-inflammatory, and mitochondrial biogenesis mechanisms that might be mediated by an AMPK-PGC1-α axis, indicating that UC-MSCs may provide a promising treatment for sarcopenia/muscle diseases.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Sarcopenia , Aging , Animals , Apoptosis , Humans , Male , Mammals , Mesenchymal Stem Cells/metabolism , Mice , Muscle, Skeletal/pathology , Muscular Atrophy/pathology , Muscular Atrophy/therapy , Quality of Life , Sarcopenia/metabolism , Sarcopenia/pathology , Sarcopenia/therapy , Umbilical Cord/metabolism
17.
Hypertension ; 79(8): 1713-1723, 2022 08.
Article in English | MEDLINE | ID: mdl-35726642

ABSTRACT

BACKGROUND: Chronic psychological stress is a risk factor for kidney disease, including kidney dysfunction and hypertension. Lysosomal CatK (cathepsin K) participates in various human pathobiologies. We investigated the role of CatK in kidney remodeling and hypertension in response to 5/6 nephrectomy injury in mice with or without chronic stress. METHODS: Male 7-week-old WT (wild type; CatK+/+) and CatK-deficient (CatK-/-) mice that were or were not subjected to chronic stress underwent 5/6 nephrectomy. At 8 weeks post-stress/surgery, the stress was observed to have accelerated injury-induced glomerulosclerosis, proteinuria, and blood pressure elevation. RESULTS: Compared with the nonstressed mice, the stressed mice showed increased levels of TLR (Toll-like receptor)-2/4, p22phox, gp91phox, CatK, MMP (matrix metalloproteinase)-2/9, collagen type I and III genes, PPAR-γ (peroxisome proliferator-activated receptor-gamma), NLRP-3 (NOD-like receptor thermal protein domain associated protein 3), p21, p16, and cleaved caspase-8 proteins, podocyte foot process effacement, macrophage accumulation, apoptosis, and decreased levels of Bcl-2 (B cell lymphoma 2) and Sirt1, as well as decreased glomerular desmin expression in the kidneys. These harmful changes were retarded by the genetic or pharmacological inhibition of CatK. Consistently, CatK inhibition ameliorated 5/6 nephrectomy-related kidney injury and dysfunction. In mesangial cells, CatK silencing or overexpression, respectively, reduced or increased the PPAR-γ and cleaved caspase-8 protein levels, providing evidence and a mechanistic explanation of CatK's involvement in PPAR-γ/caspase-8-mediated cell apoptosis in response to superoxide and stressed serum. CONCLUSIONS: These results demonstrate that CatK plays an essential role in kidney remodeling and hypertension in response to 5/6 nephrectomy or stress, possibly via a reduction of glomerular inflammation, apoptosis, and fibrosis, suggesting a novel therapeutic strategy for controlling kidney injury in mice under chronic psychological stress conditions.


Subject(s)
Cathepsin K/metabolism , Kidney Diseases , Potassium Deficiency , Stress, Physiological , Animals , Caspase 8/metabolism , Cathepsin K/genetics , Humans , Hypertension/metabolism , Kidney/metabolism , Kidney Diseases/etiology , Kidney Diseases/prevention & control , Male , Mice , Nephrectomy , Peroxisome Proliferator-Activated Receptors/metabolism
18.
PeerJ ; 10: e12846, 2022.
Article in English | MEDLINE | ID: mdl-35186462

ABSTRACT

BACKGROUND: Atherosclerosis emerges as a result of multiple dynamic cell processes including endothelial damage, inflammatory and immune cell infiltration, foam cell formation, plaque rupture, and thrombosis. Animal experiments have indicated that cathepsins (CTSs) mediate the antigen transmission and inflammatory response involved in the atherosclerosis process, but the specific signal pathways and target cells of the CTSs involved in atherosclerosis are unknown. METHODS: We used the GEO query package to download the dataset GSE28829 from the Gene Expression Omnibus (GEO) and filtered the data to check the standardization of the samples through the box chart. We then used the 'limma' package to analyze between-group differences and selected the corresponding differentially expressed genes of CTSs from the protein-protein interaction (PPI) network constructed with the STRING database, and then visualized the CTS-target genes. The best matching pathway and target cells were verified by a male mouse ligation experiment, single-sample GSEA (ssGSEA) analysis, and vitro experiment. RESULTS: There were 275 differentially expressed genes (DEGs) selected from the GSE28829 dataset, and the DEGs were identified mainly in the PPI network; 58 core genes (APOE, CD74, CP, AIF1, etc.) target three selected CTS family members (CTSS, CTSB, and CTSC). After the enriched analysis, 15 CTS-target genes were markedly enriched in the phagosome signaling pathway. The mouse experiment results revealed that the percentages and numbers of monocytes and neutrophils and the number of CD68+ cells in CTSS deficiency (CatS-/-) group were lower than those in the wildtype (CatS+/+) group. CTSS mediating phagosome via macrophage were further verified by ssGSEA analysis and vitro experiment. CONCLUSIONS: CTSS are the main target molecules in the CTS family that are involved in atherosclerosis. The molecule participate in the progression of atherosclerosis by mediating the phagosome via macrophage.


Subject(s)
Atherosclerosis , Carotid Artery Diseases , Animals , Humans , Male , Mice , Atherosclerosis/genetics , Carotid Artery Diseases/genetics , Cathepsins/genetics , Computational Biology/methods , Phagosomes/metabolism
19.
Ther Clin Risk Manag ; 18: 31-45, 2022.
Article in English | MEDLINE | ID: mdl-35027830

ABSTRACT

BACKGROUND: The prognostic implications of the admission cTnI level and D2B time combined on in-hospital and 1-year heart failure (HF) and mortality in STEMI patients undergoing a primary percutaneous coronary intervention (PCI) are remain uncertain. METHODS AND RESULTS: We divided the consecutive 1485 STEMI patients who underwent PCI from January 2015 to October 2019 at our hospital into three groups based on their admission cTnI levels: normal group (<0.1 ng/mL), middle group (0.1 to less than 3 ng/mL), and high group (≥3 ng/mL) and into two groups by their D2B times: >90 min (>90-D2B) and ≤90 min (≤90-D2B). During the in-hospital and 1-year follow-up periods, the incidence of composite clinical events increased significantly with the increase in the admission cTnI level (p < 0.05). In-hospital, the composite rate of death and HF events was significantly higher in the >90-D2B group compared to the ≤90-D2B group (p = 0.006), but its influence disappeared in the 1-year follow-up (p > 0.05). A multivariable logistic analysis revealed that, in the ≤90-D2B group, with the exception of the cTnI ≥3 ng/mL patients, the cTnI level had no effect on in-hospital or 1-year outcomes; in >90-D2B group, cTnI ≥3ng/mL increased outcomes in both periods. CONCLUSION: High cTnI levels (≥3 ng/mL) on admission are independent of the D2B time for predicting in-hospital and 1-year cardiac events in STEMI patients undergoing PCI.

20.
J Cachexia Sarcopenia Muscle ; 13(2): 1197-1209, 2022 04.
Article in English | MEDLINE | ID: mdl-35098692

ABSTRACT

BACKGROUND: Cachexia is a complicated metabolic disorder that is characterize by progressive atrophy of skeletal muscle. Cathepsin K (CTSK) is a widely expressed cysteine protease that has garnered attention because of its enzymatic and non-enzymatic functions in signalling in various pathological conditions. Here, we examined whether CTSK participates in cancer-induced skeletal muscle loss and dysfunction, focusing on protein metabolic imbalance. METHODS: Male 9-week-old wild-type (CTSK+/+ , n = 10) and CTSK-knockout (CTSK-/- , n = 10) mice were injected subcutaneously with Lewis lung carcinoma cells (LLC; 5 × 105 ) or saline, respectively. The mice were then subjected to muscle mass and muscle function measurements. HE staining, immunostaining, quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, and western blotting were used to explore the CTSK expression and IRS1/Akt pathway in the gastrocnemius muscle at various time points. In vitro measurements included CTSK expression, IRS1/Akt pathway-related target molecule expressions, and the diameter of C2C12 myotubes with or without LLC-conditioned medium (LCM). An IRS1 ubiquitin assay, and truncation, co-immunoprecipitation, and co-localization experiments were also performed. RESULTS: CTSK+/+ cachectic animals exhibited loss of skeletal muscle mass (muscle weight loss of 15%, n = 10, P < 0.01), muscle dysfunction (grip strength loss > 15%, n = 10, P < 0.01), and fibre area (average area reduction > 30%, n = 5, P < 0.01). Compared with that of non-cachectic CTSK+/+ mice, the skeletal muscle of cachectic CTSK+/+ mice exhibited greater degradation of insulin receptor substrate 1 (IRS1, P < 0.01). In this setting, cachectic muscles exhibited decreases in the phosphorylation levels of protein kinase B (Akt308 , P < 0.01; Akt473 , P < 0.05) and anabolic-related proteins (the mammalian target of rapamycin, P < 0.01) and increased levels of catabolism-related proteins (muscle RING-finger protein-1, P < 0.01; MAFbx1, P < 0.01) in CTSK+/+ mice (n = 3). Although there was no difference in LLC tumour growth (n = 10, P = 0.44), CTSK deletion mitigated the IRS1 degradation, loss of the skeletal muscle mass (n = 10, P < 0.01), and dysfunction (n = 10, P < 0.01). In vitro, CTSK silencing prevented the IRS1 ubiquitination and loss of the myotube myosin heavy chain content (P < 0.01) induced by LCM, and these changes were accelerated by CTSK overexpression even without LCM. Immunoprecipitation showed that CTSK selectively acted on IRS1 in the region of amino acids 268 to 574. The results of co-transfection of IRS1-N-FLAG or IRS1-C-FLAG with CTSK suggested that CTSK selectively cleaves IRS1 and causes ubiquitination-related degradation of IRS1. CONCLUSIONS: These results demonstrate that CTSK plays a novel role in IRS1 ubiquitination in LLC-induced muscle wasting, and suggest that CTSK could be an effective therapeutic target for cancer-related cachexia.


Subject(s)
Cachexia , Carcinoma, Lewis Lung , Cathepsin K , Insulin Receptor Substrate Proteins , Animals , Cachexia/genetics , Cachexia/metabolism , Carcinoma, Lewis Lung/pathology , Cathepsin K/metabolism , Insulin Receptor Substrate Proteins/genetics , Insulin Receptor Substrate Proteins/metabolism , Male , Mice , Muscular Atrophy/genetics , Muscular Atrophy/metabolism , Ubiquitination
SELECTION OF CITATIONS
SEARCH DETAIL
...