Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Image Process ; 31: 4173-4185, 2022.
Article in English | MEDLINE | ID: mdl-35700252

ABSTRACT

For a typical Scene Graph Generation (SGG) method in image understanding, there usually exists a large gap in the performance of the predicates' head classes and tail classes. This phenomenon is mainly caused by the semantic overlap between different predicates as well as the long-tailed data distribution. In this paper, a Predicate Correlation Learning (PCL) method for SGG is proposed to address the above problems by taking the correlation between predicates into consideration. To measure the semantic overlap between highly correlated predicate classes, a Predicate Correlation Matrix (PCM) is defined to quantify the relationship between predicate pairs, which is dynamically updated to remove the matrix's long-tailed bias. In addition, PCM is integrated into a predicate correlation loss function ( LPC ) to reduce discouraging gradients of unannotated classes. The proposed method is evaluated on several benchmarks, where the performance of the tail classes is significantly improved when built on existing methods.

2.
IEEE Trans Pattern Anal Mach Intell ; 44(10): 7029-7045, 2022 Oct.
Article in English | MEDLINE | ID: mdl-34324423

ABSTRACT

Generating non-existing frames from a consecutive video sequence has been an interesting and challenging problem in the video processing field. Typical kernel-based interpolation methods predict pixels with a single convolution process that convolves source frames with spatially adaptive local kernels, which circumvents the time-consuming, explicit motion estimation in the form of optical flow. However, when scene motion is larger than the pre-defined kernel size, these methods are prone to yield less plausible results. In addition, they cannot directly generate a frame at an arbitrary temporal position because the learned kernels are tied to the midpoint in time between the input frames. In this paper, we try to solve these problems and propose a novel non-flow kernel-based approach that we refer to as enhanced deformable separable convolution (EDSC) to estimate not only adaptive kernels, but also offsets, masks and biases to make the network obtain information from non-local neighborhood. During the learning process, different intermediate time step can be involved as a control variable by means of an extension of coord-conv trick, allowing the estimated components to vary with different input temporal information. This makes our method capable to produce multiple in-between frames. Furthermore, we investigate the relationships between our method and other typical kernel- and flow-based methods. Experimental results show that our method performs favorably against the state-of-the-art methods across a broad range of datasets. Code will be publicly available on URL: https://github.com/Xianhang/EDSC-pytorch.

SELECTION OF CITATIONS
SEARCH DETAIL
...