Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 108
Filter
1.
Genome Biol ; 25(1): 73, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38504325

ABSTRACT

With the rapid advancements in spatial transcriptome sequencing, multiple tissue slices are now available, enabling the integration and interpretation of spatial cellular landscapes. Herein, we introduce SpaDo, a tool for multi-slice spatial domain analysis, including modules for multi-slice spatial domain detection, reference-based annotation, and multiple slice clustering at both single-cell and spot resolutions. We demonstrate SpaDo's effectiveness with over 40 multi-slice spatial transcriptome datasets from 7 sequencing platforms. Our findings highlight SpaDo's potential to reveal novel biological insights in multi-slice spatial transcriptomes.


Subject(s)
Gene Expression Profiling , Transcriptome , Spatial Analysis , Cluster Analysis , Single-Cell Analysis
2.
Biomater Sci ; 12(7): 1883-1897, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38416049

ABSTRACT

Effective hemostatic materials have been in demand for rapid pre-hospital hemostasis in emergency situations, which can significantly reduce accidental deaths. The development of emergency hemostatic materials with rapid hemostasis, biosafety, and economical preparation is a great challenge. In this study, Ca(OH)2-complexed diatom powder hemostatic particles (Ca(OH)2-Php) were prepared based on a one-pot reaction by directly mixing various raw materials and by rotary granulation. High-temperature calcination was able to carbonate and consume the organic matter in the hemostatic particles. The crosslinked hydrogen bonds in those particles were converted to silica-oxygen bonds, the particles became more stable, and the porous structure of diatom biosilica (DBs) was exposed. Ca(OH)2-Php has high porosity, can quickly adsorb the water in blood (water absorption: 75.85 ± 6.93%), and exhibits rapid hemostasis capacity (clotting time was shortened by 43% compared with that of the control group), good biocompatibility (hemolysis rate <7%, no cytotoxicity), and simplicity of handling (conveniently debride, no residues, no tissue inflammation). This study provides a new idea for the preparation of emergency hemostatic materials, and Ca(OH)2-Php prepared by one-pot reaction has various high-quality characteristics including rapid hemostasis, wide applicability, economical preparation, and potential for large-scale production.


Subject(s)
Diatoms , Hemostatics , Hemostatics/pharmacology , Hemostatics/chemistry , Blood Coagulation , Hemostasis , Water/chemistry
3.
Biosci Biotechnol Biochem ; 88(3): 283-293, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38115610

ABSTRACT

Cytochrome P450s represent one of the largest protein families across all domains of life. In plants, biotic stress can regulate the expression of some P450 genes. However, the CYPome (cytochrome P450 complement) in Solanum tuberosum and its response to Phytophthora infestans infection remains unrevealed. In this study, 488 P450 genes were identified from potato genome, which can be divided into 41 families and 57 subfamilies. Responding to the infection of P. infestans, 375 potato P450 genes were expressed in late blight resistant or susceptible cultivars. A total of 14 P450 genes were identified as resistant related candidates, and 81 P450 genes were identified as late blight responsive candidates. Several phytohormone biosynthesis, brassinosteroid biosynthesis, and phenylpropanoid biosynthesis involved P450 genes were differentially expressed during the potato-pathogen interactions. This study firstly reported the CYPome in S. tuberosum, and characterized the expression patterns of these P450 genes during the infection of P. infestans.


Subject(s)
Phytophthora infestans , Solanum tuberosum , Phytophthora infestans/genetics , Solanum tuberosum/genetics , Solanum tuberosum/metabolism , Genome , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Plant Diseases/genetics
4.
Genome Med ; 15(1): 105, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38041202

ABSTRACT

BACKGROUND: The precise characterization of individual tumors and immune microenvironments using transcriptome sequencing has provided a great opportunity for successful personalized cancer treatment. However, the cancer treatment response is often characterized by in vitro assays or bulk transcriptomes that neglect the heterogeneity of malignant tumors in vivo and the immune microenvironment, motivating the need to use single-cell transcriptomes for personalized cancer treatment. METHODS: Here, we present comboSC, a computational proof-of-concept study to explore the feasibility of personalized cancer combination therapy optimization using single-cell transcriptomes. ComboSC provides a workable solution to stratify individual patient samples based on quantitative evaluation of their personalized immune microenvironment with single-cell RNA sequencing and maximize the translational potential of in vitro cellular response to unify the identification of synergistic drug/small molecule combinations or small molecules that can be paired with immune checkpoint inhibitors to boost immunotherapy from a large collection of small molecules and drugs, and finally prioritize them for personalized clinical use based on bipartition graph optimization. RESULTS: We apply comboSC to publicly available 119 single-cell transcriptome data from a comprehensive set of 119 tumor samples from 15 cancer types and validate the predicted drug combination with literature evidence, mining clinical trial data, perturbation of patient-derived cell line data, and finally in-vivo samples. CONCLUSIONS: Overall, comboSC provides a feasible and one-stop computational prototype and a proof-of-concept study to predict potential drug combinations for further experimental validation and clinical usage using the single-cell transcriptome, which will facilitate and accelerate personalized tumor treatment by reducing screening time from a large drug combination space and saving valuable treatment time for individual patients. A user-friendly web server of comboSC for both clinical and research users is available at www.combosc.top . The source code is also available on GitHub at https://github.com/bm2-lab/comboSC .


Subject(s)
Neoplasms , Transcriptome , Humans , Neoplasms/drug therapy , Neoplasms/genetics , Combined Modality Therapy , Software , Drug Combinations , Tumor Microenvironment , Single-Cell Analysis
5.
Am J Nucl Med Mol Imaging ; 13(5): 230-244, 2023.
Article in English | MEDLINE | ID: mdl-38023818

ABSTRACT

The earlier identification of EGFR mutation status in lung adenocarcinoma patients is crucial for treatment decision-making. Radiomics, which involves high-throughput extraction of imaging features from medical images for quantitative analysis, can quantify tumor heterogeneity and assess tumor biology non-invasively. This field has gained attention from researchers in recent years. The aim of this study is to establish a model based on 18F-FDG PET/CT radiomic features to predict the epidermal growth factor receptor (EGFR) mutation status of lung adenocarcinoma and evaluate its performance. 155 patients with lung adenocarcinoma who underwent 18F-FDG PET/CT scans and EGFR gene detection before treatment were retrospectively analyzed. The LIFEx packages was used to perform 3D volume of interest (VOI) segmentation manually on DICOM images and extract 128 radiomic features. The Wilcoxon rank sum test and least absolute shrinkage and selection operator (LASSO) regression algorithm were applied to filter the radiomic features and establish models. The performance of the models was evaluated by the receiver operating characteristic (ROC) curve and the area under the curve (AUC). Among the models we have built, the radiomic model based on 18F-FDG PET/CT has the best prediction performance for EGFR gene mutation status, with an AUC of 0.90 (95% CI 0.84~0.96) in the training set and 0.79 (95% CI 0.64~0.94) in the test set. In conclusion, we have established a radiomics model based on 18F-FDG PET/CT, which has good predictive performance in identifying EGFR gene mutation status in lung adenocarcinoma patients.

6.
Mar Life Sci Technol ; 5(3): 316-325, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37637254

ABSTRACT

Hemorrhage control requires hemostatic materials that are both effective and biocompatible. Among these, diatom biosilica (DBs) could significantly improve hemorrhage control, but it induces hemolysis (the hemolysis rate > 5%). Thus, the purpose of this study was to explore the influence of Ca2+ biomineralization on DBs for developing fast hemostatic materials with a low hemolysis rate. Here, CaCl2 was added to the diatom medium under high light (cool white, fluorescent lamps, 67.5 µmol m-2 s-1), producing Ca-DBs-3 with a particle size of 40-50 µm and a Ca2+ content of Ca-DBs-3 obtained from the higher concentration CaCl2 group (6.7 mmol L-1) of 0.16%. The liquid absorption capacity of Ca-DBs-3 was 30.43 ± 0.57 times its dry weight; the in vitro clotting time was comparable to QuikClot® zeolite; the hemostatic time and blood loss using the rat tail amputation model were 36.40 ± 2.52 s and 0.39 ± 0.12 g, which were 40.72% and 19.50% of QuikClot® zeolite, respectively. Ca-DBs-3 showed no apparent toxicity to L929 cells (cell viability > 80%) and was non-hemolysis (the hemolysis rate < 2%). This study prepared Ca-DBs-3 with a rapid hemostatic effect and good biocompatibility, providing a path to develop diatom biosilica hemostatic materials. Supplementary Information: The online version contains supplementary material available at 10.1007/s42995-023-00180-3.

7.
Nanomaterials (Basel) ; 13(14)2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37513132

ABSTRACT

Novel MXene-based two-dimensional (2D) membranes are widely used for water purification due to their highly controllable structure and antibacterial properties. However, in the process of membrane separation, the problems of membrane fouling, especially biological fouling, limits the further application of MXene-based membranes. In this study, in order to improve the antibacterial and separation properties of membranes, three kinds of MXene-based 2D-2D composite membranes (M2~M4) were prepared using polyethersulfone (PES) as the substrate, which were GO@MXene, O-g-C3N4@MXene and BiOCl@MXene composite membranes respectively. The results showed that the antibacterial activity of M2~M4 against Escherichia coli and Staphylococcus aureus was further improved, especially the antibacterial ratio of M4 against Escherichia coli and Staphylococcus aureus was up to 50% and 82.4%, respectively. By comparing the surface morphology of MXene membrane and modified membrane treated bacteria through scanning electron microscopy (SEM), it was found that the cell density on modified membrane was significantly lower than that of pure MXene membrane.

8.
Am J Transl Res ; 15(4): 2585-2597, 2023.
Article in English | MEDLINE | ID: mdl-37193164

ABSTRACT

OBJECTIVE: This study seeks to assess the efficacy of exfoliated colonocytes isolated from feces (ECIF) miR-92a as a clinical colorectal cancer diagnostic marker in a larger cohort. METHODS: Clinicopathologic data from colorectal cancer patients and health controls that underwent colonoscopy, as well as patients of other cancers diagnosed, were included. A total of 963 Chinese participants were enrolled, with 292 (27.4%) having colorectal cancer, 140 (14.5%) having other types of cancer, e.g., pancreatic, liver, oral, bile duct, esophagus, and stomach cancer, 171 (17.8%) having infection in the intestine, rectal, stomach, appendix, and gastrointestinal ulcer, and 360 (37.4%) of healthy controls. ECIF samples were gathered and miR-92a levels were detected using TaqMan probe-based miR-92a real-time quantitative PCR (RT-qPCR) kit developed by Shenzhen GeneBioHealth Co., Ltd. RESULTS: Through a series of experiments, we demonstrated that the Ep-LMB/Vi-LMB magnetic separation system is feasible, highly specific, and highly sensitive at a cutoff value of 1053 copies per 6 ng of ECIF RNA. ECIF miR-92a levels were significantly higher in colorectal cancer patients than in controls. Colorectal cancer detection sensitivity and specificity were 87.3% and 86.9% respectively. Furthermore, the performance of this miR-92a detection kit demonstrated that it is an effective tool for colorectal cancer, with a high sensitivity of 84.1%, even in early cancer stages (0, I, and II). Furthermore, tumor removal resulted in lower stool miR-92a levels (3.21±0.58 vs. 2.14±1.14, P < 0.0001, n = 65). CONCLUSION: Finally, the miR-92a RT-qPCR kit detects ECIF-increased miR-92a and could be used for colorectal cancer screening.

9.
Colloids Surf B Biointerfaces ; 225: 113281, 2023 May.
Article in English | MEDLINE | ID: mdl-37004386

ABSTRACT

Skin lesions caused by ultraviolet radiation exposure seriously reduce people's life quality, safe natural products development to prevent and repair ultraviolet damage is an effective strategy. We investigated the protective and reparative effects of the natural composite gel (SE-gel) derived from fish scales on UV-irradiated skin by inhibiting reactive oxygen species (ROS) -mediated oxidative stress and inflammatory responses. Our results showed that SE-gel rich in glycine and proline had good ultraviolet absorption, water absorption, moisturizing and free radical scavenging abilities. In vitro, SE-gel could improve UV-irradiated L929 cell viability by 1.24 times via inhibiting 50% ROS production and malondialdehyde, and improving superoxide dismutase activity to reduce oxidative stress caused by UV irradiation. In UV-irradiated mouse skin damage model, SE-gel prevent UV-induced skin erythema, epidermal thickening, collagen fiber degradation and disruption, and reduced UV-induced inflammatory response via NF-κB signaling pathway, showing potential application in UV-irradiated skin damage prevention and repair.


Subject(s)
Hydrogels , Ultraviolet Rays , Animals , Mice , Ultraviolet Rays/adverse effects , Reactive Oxygen Species/metabolism , Hydrogels/pharmacology , Hydrogels/metabolism , Skin , Oxidative Stress
10.
Langmuir ; 39(12): 4427-4438, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-36913507

ABSTRACT

The titanosilicate zeolite with a MWW topology structure was synthesized by the atom-planting method through the dehydrochlorination of the hydroxyl group in the deboronated ERB-1 zeolite (D-ERB-1) and TiCl4, and Au was further loaded with the deposition precipitation method to apply for the ethane direct dehydrogenation (DH) and dehydrogenation of ethane in the presence of O2 (O2-DH). It was found that Au nanoparticles (NPs) below 5 nm exhibited good activity for ethane direct dehydrogenation and O2-DH. The addition of titanium can not only anchor more Au but also make Au have a more dispersed homogeneous distribution. The ethane O2-DH catalytic performances of Au-loaded Ti-incorporated D-ERB-1 (Ti-D-ERB-1) were compared to those of Au-loaded ZnO-D-ERB-1 and pure silicate D-ERB-1. The results confirm that ethane O2-DH catalyzed by Au-Ti paired active sites is a tandem reaction of catalytic ethane DH and selective H2 combustion (SHC) of generated H2. According to the experimental results and calculated kinetic parameters, such as the activation energy of DH and SHC reaction heat of O2-DH, SHC catalyzed by the Au/Ti-D-ERB-1 catalyst containing the Au-Ti active site can not only break the ethane dehydrogenation thermodynamic equilibrium limitation to improve the ethylene yield but also suppress the CO2 and CO selectivity.

11.
Carbohydr Polym ; 304: 120483, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36641181

ABSTRACT

Hydrogel, as three-dimensional (3D) cell culture scaffold, is an effective strategy for tissue and organ regeneration due to their good biocompatibility, biodegradability and resemblance to body microenvironments in vivo. However, the inherent weak mechanical properties and strong shrinkage of hydrogels during cell culture hinder its application in clinical. In this study, a two-component thermo/photo dual-sensitive hydrogel (M/C) was prepared from methacrylated hydroxybutyl chitosan (MHBC) and chitin whisker (CHW) via physical and chemical cross-linking methods. M/C hydrogel showed a special internal structure with lamellar arrangement. The rheological properties of the hydrogels could be regulated with the change of M/C ratio. It is worth emphasizing that the mechanical properties, shrinkage resistance and cellular capacitances of the M/C hydrogel were improved with the addition of CHW. Moreover, the M/C hydrogel not only exhibited excellent degradability and antibacterial properties, but also significantly promoted the adhesion and proliferation of MC3T3-E1 cells in vitro. Therefore, the M/C hydrogel showed a wide application potential in tissue regeneration as a 3D cell culture scaffold.


Subject(s)
Chitin , Chitosan , Animals , Chitin/pharmacology , Chitin/chemistry , Hydrogels/pharmacology , Hydrogels/chemistry , Tissue Scaffolds/chemistry , Vibrissae , Chitosan/pharmacology , Chitosan/chemistry , Cell Culture Techniques, Three Dimensional , Tissue Engineering/methods
12.
Food Funct ; 13(12): 6777-6791, 2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35667104

ABSTRACT

We previously found that the combination of protease and a novel ß-porphyranase Por16A_Wf may contribute to the deep-processing of laver. The purpose of the present study is to assess the hypoglycemic effect of the compound enzymatic hydrolysate (CEH) of Neoporphyra haitanensis. Thus, biochemical indexes related to diet-induced hyperglycemia were mainly detected using hematoxylin and eosin (H&E) staining, fluorescence quantitative PCR, and ultrahigh performance liquid chromatography-mass spectrometry (UPLC-MS). Then 16s rRNA gene sequencing was performed to analyze the effects of CEH on the gut microbiome in high-fat diet (HFD)-fed mice. The results suggested that CEH reduced the blood glucose level and alleviated insulin resistance. Possibly because CEH repressed intestinal α-glucosidase activity, inhibiting key enzymes (G6Pase and PEPCK) related to hepatic gluconeogenesis, and increased the expression of the enzyme (GLUT4) involved in peripheral glucose uptake. As potential indicators of hyperglycemia, total bile acids in the feces were reversed to the control levels after CEH intervention. Particularly, CEH decreased the content of tauro-α-muricholic acid (TαMCA) and ω-muricholic acid (ωMCA). Furthermore, CEH promoted the proliferation of beneficial bacteria (e.g. Parabacteroides), which may play a role in glycemic control. CEH also regulated the KEGG pathways associated with glycometabolism, such as "fructose and mannose metabolism". In summary, CEH supplementation has favorable effects on improving glucose metabolism and regulating the gut microbiome in HFD-fed mice. CEH has potential to be applied in the development of functional foods.


Subject(s)
Gastrointestinal Microbiome , Hyperglycemia , Animals , Chromatography, Liquid , Diet, High-Fat/adverse effects , Gluconeogenesis , Hyperglycemia/drug therapy , Mice , Mice, Inbred C57BL , RNA, Ribosomal, 16S , Tandem Mass Spectrometry
13.
J Food Biochem ; 46(8): e14175, 2022 08.
Article in English | MEDLINE | ID: mdl-35510340

ABSTRACT

Intestinal mucosal immunity is important to human body; however, obesity induced by high-fat diet may bring a series of problems, such as chronic inflammation which may damage intestinal mucosal immunity. In this study, the effects of two different enzymatic hydrolysates of porphyra on the function of intestinal mucosal were explored in obese mice. The results showed that 10 consecutive weeks of high-fat dietary intake resulted in weight gain and intestinal abnormalities in C57BL/6 mice. However, the administration of enzymatic hydrolysate of porphyra effectively protected the intestinal mucosa from these injuries while reducing levels of oxidative stress (MDA, GSH, and GSH-Px). Specifically, they were found to improve small intestine morphological structure, increase growth of goblet cells and mucous, raise expression levels of lysozyme, and stimulate SIgA secretion, especially in the group administered with the enzymatic hydrolysate containing protease and polysaccharide enzyme (EHPP). The results showed that the enzymatic hydrolysates of porphyra may provide a protective measure to maintain intestinal mucosal barriers, which is beneficial to overall health. Porphyra is widely distributed all over the world. Moreover, an increasing number of studies have described its diverse biological functions. Therefore, it is necessary to find a way to develop products related to porphyra. In this study, a new type of polysaccharide enzyme of porphyra found in our previous research was used to make a clear porphyra energy drink with a lower molecular weight polysaccharide. Our findings highlighted the repaired intestinal barriers in obese bodies after the treatment with the enzymatic hydrolysate. PRACTICAL APPLICATIONS: Porphyra is widely distributed all over the world. Moreover, an increasing number of studies have described its diverse biological functions. Therefore, it is necessary to find a way to develop products related to porphyra. In this study, a new type of polysaccharide enzyme of porphyra found in our previous research was used to make a clear porphyra energy drink with a lower molecular weight polysaccharide. Our findings highlighted the repaired intestinal barriers in obese bodies after the treatment with the enzymatic hydrolysate.


Subject(s)
Porphyra , Animals , Humans , Intestinal Mucosa/metabolism , Mice , Mice, Inbred C57BL , Mice, Obese , Obesity/drug therapy , Obesity/metabolism , Polysaccharides/chemistry
14.
ChemSusChem ; 15(12): e202200218, 2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35419991

ABSTRACT

Aqueous-phase oxidation by H2 O2 , known as the Fenton-type process, provides an attractive route to convert recalcitrant lignin derivatives to valuable chemicals under mild conditions. The development of this technology is, however, limited by the uncontrolled selectivity, resulting from the highly reactive nature of H2 O2 and the thermodynamically favored deep oxidation to form CO2 . This study demonstrated that formic acid could be produced with a high selectivity (up to 80.3 % at 313 K) from the Fenton-type oxidation of guaiacol and several other lignin derivatives over a bimetallic Fe-Cu catalyst supported on a ZSM-5 zeolite. Combined experimental and theoretical investigations unveiled that the micropores of the zeolite support, which contained active metal sites, preferred to adsorb C2 -C4 intermediates over formic acid because of its stronger dispersive interaction with the larger guest molecules. This confinement effect significantly suppressed the secondary oxidation of formic acid, accounting for the uniquely high formic acid selectivity over Fe-Cu/ZSM-5.


Subject(s)
Copper/chemistry , Formates , Iron/chemistry , Lignin , Zeolites/chemistry , Catalysis , Oxidation-Reduction
15.
Materials (Basel) ; 15(3)2022 Jan 30.
Article in English | MEDLINE | ID: mdl-35161033

ABSTRACT

Aimed at improving the electromagnetic (EM) shielding and flame retardancy of cellulose materials, graphene (GE) nanoplates were introduced into cellulose matrix films by blending in1-allyl-3-methylimidazolium chloride. The structure and performance of the obtained composite films were investigated using scanning electron microscopy, X-ray diffraction, thermogravimetric (TG) analysis, EM shielding effectiveness (SE), and combustion tests. GE introduction formed and stacked laminated structures in the films after drying due to controlled shrinkage of the cellulose matrix. The lamination of GE nanoplates into the films was beneficial for providing EM shielding due to multiple internal reflection of EM radiation; furthermore, they also increased flame resistance based on the "labyrinth effect." The SE of these composite films increased gradually with increased GE content and reached 22.3 dB under an incident frequency of 1500 MHz. TG analysis indicated that these composite films possessed improved thermal stability due to GE addition. Reduced flammability was confirmed by their extended times to ignition or inability to be ignited, reduced heat release rates observed in cone calorimetry tests, and increased limiting oxygen index values. These films with improved EM shielding and flame retardancy could be considered potential candidates for multipurpose materials in various applications, such as electronics and radar evasion.

16.
Front Cell Dev Biol ; 9: 743335, 2021.
Article in English | MEDLINE | ID: mdl-34869331

ABSTRACT

Bacterial infection tendentiously triggers inflammasome activation, whereas the roles of inflammasome activation in host defense against diverse infections remain unclear. Here, we identified that an ASC-dependent inflammasome activation played opposite roles in host defense against Francisella novicida wild-type (WT) U112 and mutant strain XWK4. Comparing with U112, XWK4 infection induced robust cytokine production, ASC-dependent inflammasome activation, and pyroptosis. Both AIM2 and NLRP3 were involved and played independent roles in XWK4-induced inflammasome activation. Type II interferon was partially required for XWK4-triggered inflammasome activation, which was different from type I interferon dependency in U112-induced inflammasome activation. Distinct from F. novicida U112 and Acinetobacter baumannii infection, Asc-/- mice were more resistant than WT mice response to XWK4 infection by limiting bacterial burden in vivo. The excessive inflammasome activation triggered by XWK4 infection caused dramatical cell death and pathological damage. Our study offers novel insights into mechanisms of inflammasome activation in host defense and provides potential therapeutic approach against bacterial infections and inflammatory diseases.

17.
Front Cell Dev Biol ; 9: 773101, 2021.
Article in English | MEDLINE | ID: mdl-34869372

ABSTRACT

Cancers that are histologically defined as the same type of cancer often need a distinct therapy based on underlying heterogeneity; likewise, histologically disparate cancers can require similar treatment approaches due to intrinsic similarities. A comprehensive analysis integrated with drug response data and molecular alterations, particularly to reveal therapeutic concordance mechanisms across histologically disparate tumor subtypes, has not yet been fully exploited. In this study, we integrated pharmacological, genomic, and transcriptomic profiling data provided from the Cancer Genome Project (CGP) in a systematic in silico investigation of the pharmacological subtypes of cancers and the intrinsic concordance of molecular mechanisms leading to similar therapeutic responses across histologically disparate tumor subtypes. We further developed a novel approach to redefine cell-to-cell similarity and drug-to-drug similarity from the therapeutic concordance, providing a new point of view to study cancer heterogeneity. This study demonstrates how pharmacological and omics data can be used to systematically classify cancers in terms of response to various compounds and provides us with a purely therapy-oriented perspective to view tumor classifications independent of histology subtypes. The knowledge of pharmacological subtypes of 367 drugs are available via our website (http://www.hywanglab.cn/dtdb/), providing the resources for precision medicine in the perspective of therapeutic response-based re-classification of tumor.

18.
Front Microbiol ; 12: 739569, 2021.
Article in English | MEDLINE | ID: mdl-34745041

ABSTRACT

Aspergillus oryzae, commonly known as koji mold, has been widely used for the large-scale production of food products (sake, makgeolli, and soy sauce) and can accumulate a high level of lipids. In the present study, we showed the dynamic changes in A. oryzae mycelium growth and conidia formation under nitrogen and phosphorus nutrient stress. The fatty acid profile of A. oryzae was determined and the content of unsaturated fatty acid was found increased under nitrogen and phosphorus limitation. Oleic acid (C18:1), linoleic acid (C18:2), and γ-linolenic acid (C18:3) production were increased on five nitrogen and phosphorus limitation media, especially on nitrogen deep limitation and phosphorus limitation group, showing a 1. 2-, 1. 6-, and 2.4-fold increment, respectively, compared with the control. Transcriptomic analysis showed the expression profile of genes related to nitrogen metabolism, citrate cycle, and linoleic acid synthesis, resulting in the accumulation of unsaturated fatty acid. qRT-PCR results further confirmed the reliability and availability of the differentially expressed genes obtained from the transcriptome analysis. Our study provides a global transcriptome characterization of the nitrogen and phosphorus nutrient stress adaptation process in A. oryzae. It also revealed that the molecular mechanisms of A. oryzae respond to nitrogen and phosphorus stress. Our finding facilitates the construction of industrial strains with a nutrient-limited tolerance.

19.
Gland Surg ; 10(9): 2715-2723, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34733721

ABSTRACT

BACKGROUND: Triple-negative breast cancer (TNBC) patients have a high 2-year post-operative incidence of brain metastasis (BM). Currently, there is no early prediction tool to predict the risk of BM in TNBC patients. METHODS: Data of breast cancer patients, who had been scanned, resected, and pathologically diagnosed at a local hospital from May 2012 to June 2018 were collected. Primary and radiological secondary exclusion criteria were used to determine patients' eligibility for inclusion in the study. Data for the TNBC cohort included qualified 2-year post-operative follow-up information, BM status, and pre-operative MRI data. Age-based propensity score matching (PSM) was used to build a comparable study cohort. The tumor regions of interest were segmented and used for lattice radiomics feature extraction. The filtered and normalized lattice radiomics features were then trained with BM status using the random forest (RF), support vector machine (SVM), k-nearest neighbor, least absolute shrinkage and selection operator regression, naïve Bayesian, and neural network algorithms. The generated prediction models were evaluated using 10-fold cross verification, and the areas under the curve (AUCs), accuracy, sensitivity, and specificity were reported. RESULTS: Data from 643 breast cancer patients were collected. Among these, 84 TNBC cases (comprising 42 pairs) were included in this study after primary exclusion, radiological secondary exclusion, and PSM. We extracted 3,854 lattice radiomics features from the pre-operative MRI. Of these, 2,480 were used for model training after filtration. The 10-fold verification results showed that the BM risk-prediction model, which was based on the normalized and filtered lattice radiomics features of collected cases trained by naïve Bayesian algorithm, had a high AUC (0.878), accuracy (0.786), specificity (81.0%), and sensitivity (76.2%). CONCLUSIONS: The pre-operative MRI data of TNBC patients can be used to predict 2-year BM risk. This application could help to achieve better early stratification, BM screening, and the overall prognosis.

20.
Neurobiol Pain ; 10: 100071, 2021.
Article in English | MEDLINE | ID: mdl-34401608

ABSTRACT

•ANXA2 is a novel MOR1-interacting protein regulating MOR1 sub-cellular localization.•ANXA2 retains MOR1 in late recycling endosomes after remifentanil exposure.

SELECTION OF CITATIONS
SEARCH DETAIL
...