Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Water Sci Technol ; 71(8): 1255-62, 2015.
Article in English | MEDLINE | ID: mdl-25909738

ABSTRACT

A system dynamics optimization model of the industrial structure of Tieling City based on water environmental carrying capacity has been established. This system is divided into the following subsystems: water resources, economics, population, contaminants, and agriculture and husbandry. Three schemes were designed to simulate the model from 2011 to 2020, and these schemes were compared to obtain an optimal social and economic development model in Tieling City. Policy recommendations on industrial structure optimization based on the optimal solution provide scientific decision-making advice to develop a strong and sustainable economy in Tieling.


Subject(s)
Cities , Conservation of Natural Resources , Industry , Water Resources , Chin , Economic Development , Environment , Models, Economic , Models, Theoretical , Water Supply
2.
Bot Stud ; 56(1): 2, 2015 Dec.
Article in English | MEDLINE | ID: mdl-28510811

ABSTRACT

BACKGROUND: Symbiotic nitrogen fixation in plants occurs in roots with the help of some bacteria which help in soil nitrogen fertility management. Isolation of significant environment friendly bacteria for nitrogen fixation is very important to enhance yield in plants. RESULTS: In this study effect of different magnetic field intensity and treatment time was studied on the morphology, physiology and nitrogen fixing capacity of newly isolated Paenibaccilus sp. from brown soil. The bacterium was identified by 16S rDNA sequence having highest similarity (99%) with Paenibacillus sp as revealed by BLAST. Different magnetic intensities such as 100mT, 300mT and 500mT were applied with processing time of 0, 5, 10, 20 and 30 minutes. Of all these treatment 300mT with processing time of 10 minutes was found to be most suitable treatment. Results revealed that magnetic treatment improve the growth rate with shorter generation time leading to increased enzyme activities (catalase, peroxidase and superoxide dismutase) and nitrogen fixing efficiencies. High magnetic field intensity (500mT) caused ruptured cell morphology and decreased enzyme activities which lead to less nitrogen fixation. CONCLUSION: It is concluded that appropriate magnetic field intensity and treatment time play a vital role in the growth of soil bacteria which increases the nitrogen fixing ability which affects the yield of plant. These results were very helpful in future breading programs to enhance the yield of soybean.

3.
PLoS One ; 8(4): e60794, 2013.
Article in English | MEDLINE | ID: mdl-23565275

ABSTRACT

Relationships of foliar carbon isotope composition (δ(13)C) with foliar C, N, P, K, Ca, Mg contents and their ratios of 219 C3 species leaf samples, obtained in August in 2004 to 2007 from 82 high altitude grassland sites on the Qinghai-Tibet Plateau China, were examined. This was done with reference to the proposition that foliar δ(13)C increases with altitude and separately for the life-form groups of graminoids, forbs and shrubs and for the genera Stipa and Kobresia. For all samples, foliar δ(13)C was negatively related to foliar K, P and ∑K+ Ca+ Mg, and positively correlated to foliar C, C/N and C/P. The significance of these correlations differed for the taxonomic and life-form groups. Lack of a relationship of foliar δ(13)C with foliar N was inconsistent with the majority of studies that have shown foliar δ(13)C to be positively related to foliar N due to a decrease of Ci/Ca (the ratio between intercellular and atmospheric concentration of CO2) and explained as a result of greater photosynthetic capacity at higher foliar N concentration. However this inconsistency relates to other high altitude studies that have found that photosynthetic capacity remains constant as foliar N increases. After accounting for the altitudinal relationship with foliar δ(13)C, of the elements only the K effect was significant and was most strongly expressed for Kobresia. It is concluded that factors critical to plant survival and growth at very high altitudes, such as low atmospheric pressure and low temperatures, may preclude expression of relationships between foliar δ(13)C and foliar elements that have been observed at lower altitudes.


Subject(s)
Altitude , Carbon Isotopes/chemistry , Plant Leaves/chemistry , Plants/chemistry , Carbon/chemistry , China , Cyperaceae/chemistry , Nitrogen/chemistry , Tibet
SELECTION OF CITATIONS
SEARCH DETAIL
...