Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Photonics ; 10(9): 3374-3383, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37743941

ABSTRACT

Effective light extraction from optically active solid-state spin centers inside high-index semiconductor host crystals is an important factor in integrating these pseudo-atomic centers in wider quantum systems. Here, we report increased fluorescent light collection efficiency from laser-written nitrogen-vacancy (NV) centers in bulk diamond facilitated by micro-transfer printed GaN solid immersion lenses. Both laser-writing of NV centers and transfer printing of micro-lens structures are compatible with high spatial resolution, enabling deterministic fabrication routes toward future scalable systems development. The micro-lenses are integrated in a noninvasive manner, as they are added on top of the unstructured diamond surface and bonded by van der Waals forces. For emitters at 5 µm depth, we find approximately 2× improvement of fluorescent light collection using an air objective with a numerical aperture of NA = 0.95 in good agreement with simulations. Similarly, the solid immersion lenses strongly enhance light collection when using an objective with NA = 0.5, significantly improving the signal-to-noise ratio of the NV center emission while maintaining the NV's quantum properties after integration.

2.
Opt Express ; 30(19): 35029-35040, 2022 Sep 12.
Article in English | MEDLINE | ID: mdl-36242504

ABSTRACT

We demonstrate an arbitrary distance measurement method by chirped pulse spectrally interferometry (CPSI) using femtosecond optical frequency comb (OFC). In this paper, the chirped fiber Bragg grating (CFBG) is used to investigate the mapping relationship between displacement and the center frequency of the chirped spectral interferogram. We overcome the direction ambiguity of dispersive interferometry (DPI) ranging and expand the range of distance measurement to 18 cm. Besides, we achieve a full range of dead-zone free ranging by introducing a variable optical delay line (VODL). And through principles simulation and experiment, it is demonstrated that the measurement accuracy is 12 µm in comparison with an incremental He-Ne laser interferometer and the minimum Allen deviation is 52 nm at an average time of 1.76 ms. Similarly, in the experiment with long-distance of ∼30m, the accuracy reaches 20 µm, and 2.51 µm repeatability is achieved under harsh environment.

3.
Sensors (Basel) ; 22(14)2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35891083

ABSTRACT

Since the dispersive interferometry (DPI) based on optical frequency combs (OFCs) was proposed, it has been widely used in absolute distance measurements with long-distance and high precision. However, it has a serious problem for the traditional DPI based on the mode-locked OFC. The error of measurements caused by using the fast Fourier transform (FFT) algorithm to process signals cannot be overcome, which is due to the non-uniform sampling intervals in the frequency domain of spectrometers. Therefore, in this paper, we propose a new mathematical model with a simple form of OFC to simulate and analyze various properties of the OFC and the principle of DPI. Moreover, we carry out an experimental verification, in which we adopt the Lomb-Scargle algorithm to improve the accuracy of measurements of DPI. The results show that the Lomb-Scargle algorithm can effectively reduce the error caused by the resolution, and the error of absolute distance measurement is less than 12 µm in the distance of 70 m based on the mode-locked OFC.

4.
Opt Express ; 29(18): 28582-28596, 2021 Aug 30.
Article in English | MEDLINE | ID: mdl-34614985

ABSTRACT

The basic principle of frequency-modulated continuous-wave lidars is to measure the velocity of a moving object through the Doppler frequency shift phenomenon. However, the vibration generated by the moving object will cause the spectrum to broaden and the precision and repeatability of speed measurement to decrease. In this paper, we propose a speed measurement method based on H13C14N gas cell absorption peak splitting the sweep signal of a large bandwidth triangular wave modulated frequency laser. This method obtains the speed of a continuously moving target by re-splicing an accurately-split frequency sweep signal, which effectively solves the problem of simultaneous processing of excessive amounts of data when measuring the speed of a continuously moving target. At the same time, the H13C14N gas cell absorbs the spectra of specific wavelengths, which reduces the phase delay of the beat signal corresponding to the up- and down-scanning, thus reducing the signal spectrum broadening caused by frequency deviation, and improving the speed measurement resolution and range effectively. The experimental results show that for speeds of up to 30mm/s, the mean error was less than 23µm/s and the mean standard deviation was less than 61µm/s.

SELECTION OF CITATIONS
SEARCH DETAIL
...