Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 792
Filter
1.
PLoS One ; 19(6): e0304108, 2024.
Article in English | MEDLINE | ID: mdl-38857294

ABSTRACT

To stimulate the regional tourism economy, local governments often seek to increase the number of 5A-rated tourist attractions. However, there have been few analyses examining the economic benefits and influence mechanisms of 5A-rated attraction selection. Using the quality signaling theory and data from 282 prefecture-level cities spanning 2002 to 2019, this study examines the impact of 5A-rated attraction selection on the local tourism economy with the difference-in-differences method. This study's results demonstrate that the selection of 5A-rated attractions significantly contributes to the growth of the local tourism economy. The robustness test results confirm the validity of this conclusion. A mechanism analysis reveals that 5A-rated attractions positively impact the tourism economy via investments in infrastructure, popularization of informatization, and increased external openness. Furthermore, the study suggests that the effect of 5A-rated attractions is more pronounced in economically underdeveloped regions and low-level cities. The results of this study contribute to the sustainable development of China's tourism economy and may provide guidance for the establishment of tourism evaluation systems in other international locations in order to foster economic growth.


Subject(s)
Tourism , China , Humans , Cities , Economic Development , Sustainable Development/economics , Travel/economics
2.
NPJ Breast Cancer ; 10(1): 43, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858374

ABSTRACT

Fatty acid synthesis (FAS) has been shown to play a key role in the survival of brain-metastatic (BM) breast cancer. We demonstrate that the fatty acid synthase inhibitor TVB-2640 synergizes with the topoisomerase inhibitor SN-38 in triple-negative breast cancer (TNBC) BM cell lines, upregulates FAS and downregulates cell cycle progression gene expression, and slows the motility of TNBC BM cell lines. The combination of SN-38 and TVB-2640 warrants further consideration as a potential therapeutic option in TNBC BMs.

3.
Article in English | MEDLINE | ID: mdl-38743531

ABSTRACT

Remote photoplethysmography (rPPG) is a non-contact method that employs facial videos for measuring physiological parameters. Existing rPPG methods have achieved remarkable performance. However, the success mainly profits from supervised learning over massive labeled data. On the other hand, existing unsupervised rPPG methods fail to fully utilize spatio-temporal features and encounter challenges in low-light or noise environments. To address these problems, we propose an unsupervised contrast learning approach, ST-Phys. We incorporate a low-light enhancement module, a temporal dilated module, and a spatial enhanced module to better deal with long-term dependencies under the random low-light conditions. In addition, we design a circular margin loss, wherein rPPG signals originating from identical videos are attracted, while those from distinct videos are repelled. Our method is assessed on six openly accessible datasets, including RGB and NIR videos. Extensive experiments reveal the superior performance of our proposed ST-Phys over state-of-the-art unsupervised rPPG methods. Moreover, it offers advantages in parameter reduction and noise robustness.

4.
Food Chem ; 453: 139563, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38776791

ABSTRACT

Molecular hydrogen is beneficial for fruits quality improvement. However, the mechanism involved, especially cellular metabolic responses, has not been well established. Here, the integrated widely targeted metabolomics analysis (UPLC-MS/MS) and biochemical evidence revealed that hydrogen-based irrigation could orchestrate, either directly or indirectly, an array of physiological responses in blueberry (Vaccinium spp.) during harvesting stage, especially for the delayed senescence in harvested stage (4 °C for 12 d). The hubs to these changes are wide-ranging metabolic reprogramming and antioxidant machinery. A total of 1208 distinct annotated metabolites were identified, and the characterization of differential accumulated metabolites (DAMs) revealed that the reprogramming, particularly, involves phenolic acids and flavonoids accumulation. These changes were positively matched with the transcriptional profiles of representative genes for their synthesis during the growth stage. Together, our findings open a new window for development of hydrogen-based agriculture that increases the shelf-life of fruits in a smart and sustainable manner.


Subject(s)
Antioxidants , Blueberry Plants , Fruit , Hydrogen , Blueberry Plants/metabolism , Blueberry Plants/chemistry , Blueberry Plants/growth & development , Blueberry Plants/genetics , Hydrogen/metabolism , Hydrogen/analysis , Fruit/metabolism , Fruit/chemistry , Fruit/growth & development , Fruit/genetics , Antioxidants/metabolism , Agricultural Irrigation , Tandem Mass Spectrometry , Metabolomics , Flavonoids/metabolism , Metabolic Reprogramming
5.
Zhongguo Zhong Yao Za Zhi ; 49(10): 2710-2721, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38812171

ABSTRACT

Studies have reported that the hemostatic effect of Sanguisorbae Radix(SR) is significantly enhanced after processing with charcoal. However, the standard components(tannins and gallic acid) specified in the Chinese Pharmacopeia decrease in charcoal-fried Sanguisorbae Radix(CSR), which is contrast to the enhancement of the hemostatic effect. Therefore, this study aimed to optimize the charcoal-frying process of SR based on its hemostatic efficacy and comprehensively analyze the components of SR and its processed products, thus exploring the material basis for the hemostatic effect. The results indicated that SR processed at 250 ℃ for 14 min(14-min CSR) not only complied with the description in the Chinese Pharmacopeia but also demonstrated improved blood-coagulating and blood-adsorbing effects compared with raw SR(P<0.05). Moroever, 14-min CSR reduced the bleeding time in the rat models of tail snipping, liver bleeding, and muscle injury, surpassing both raw and excessively fried SR(16 min processed) as well as tranexamic acid(P<0.05). Ellagitannin, ellagic acid, methyl gallate, pyrogallic acid, protocatechuic acid, Mg, Ca, Mn, Cu, and Zn contributed to the hemostatic effect of CSR over SR. Among these substances, ellagitannin, ellagic acid, Mg, and Ca had high content in the 14 min CSR, reaching(106.73±14.87),(34.86±4.43),(2.81±0.23), and(1.21±0.23) mg·g~(-1), respectively. Additionally, the color difference value(ΔE~*ab) of SR processed to different extents was correlated with the content of the aforementioned hemostatic substances. In summary, this study optimized the charcoal-frying process as 250 ℃ for 14 min for SR based on its hemostatic effect. Furthermore, ellagic acid and/or the powder chromaticity are proposed as indicators for the processing and quality control of CSR.


Subject(s)
Charcoal , Drugs, Chinese Herbal , Hemostatics , Rats, Sprague-Dawley , Sanguisorba , Animals , Rats , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Hemostatics/pharmacology , Hemostatics/chemistry , Sanguisorba/chemistry , Charcoal/chemistry , Male , Cooking , Blood Coagulation/drug effects , Humans
6.
Discov Oncol ; 15(1): 195, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809316

ABSTRACT

INTRODUCTION: Lung cancer (LC) is the most common solid tumor and is currently considered the primary cause of cancer-related deaths worldwide. In clinical efficacy studies, it was not difficult to find that the combination of SFI and chemotherapy could improve the general condition of patients, reduce the side effects of chemotherapy drugs, and have a cooperative antitumor effect in NSCLC patients. However, whether SFI can be used as a novel antitumor drug is still unknown. METHODS: First, meta-analysis aimed to explore the efficacy of SFI in NSCLC patients, and SFI was identified by ultra-performance liquid chromatography‒mass spectrometry (UPLC‒MS). Cell proliferation, migration, and invasion were explored by Cell Counting Kit-8 (CCK-8), scratch healing, and Transwell assays, respectively. Cell cycle and apoptosis assays were performed by flow cytometry. Transcriptome sequencing analysis was performed in four NSCLC cell lines. Differential expression analysis was used to identify potential targets. Apoptosis-related protein levels were detected by Western blotting assays. The effects of SFI in NSCLC were further investigated by mouse xenografts. RESULTS: SFI could markedly improve the chemotherapy efficacy of NSCLC patients. The main active ingredients include flavonoids and terpenoids, which can effectively exert antitumor effects. SFI could not only inhibit tumor cell proliferation and cell migration/invasion but also regulate the cell cycle and promote tumor cell apoptosis. In NSCLC, SFI could enhance the transcription level of the CHOP gene, thereby upregulating the expression of the proapoptotic proteins Bax and caspase 3, and inhibiting the expression of the antiapoptotic protein Bcl-2. SFI hindered the growth of mouse NSCLC xenografts in vivo. CONCLUSIONS: SFI hindered tumor progression and might promote apoptosis by increasing the expression of Bax, caspase 3 and decreasing the level of Bcl-2 in NSCLC.

7.
Science ; 384(6699): 987-994, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38815009

ABSTRACT

Human skin sensing of mechanical stimuli originates from transduction of mechanoreceptors that converts external forces into electrical signals. Although imitating the spatial distribution of those mechanoreceptors can enable developments of electronic skins capable of decoupled sensing of normal/shear forces and strains, it remains elusive. We report a three-dimensionally (3D) architected electronic skin (denoted as 3DAE-Skin) with force and strain sensing components arranged in a 3D layout that mimics that of Merkel cells and Ruffini endings in human skin. This 3DAE-Skin shows excellent decoupled sensing performances of normal force, shear force, and strain and enables development of a tactile system for simultaneous modulus/curvature measurements of an object through touch. Demonstrations include rapid modulus measurements of fruits, bread, and cake with various shapes and degrees of freshness.


Subject(s)
Mechanoreceptors , Touch , Humans , Mechanoreceptors/physiology , Merkel Cells/physiology , Skin/innervation , Skin Physiological Phenomena , Skin, Artificial
8.
Vet Microbiol ; 294: 110134, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38820725

ABSTRACT

Infectious bronchitis virus (IBV) restricts cell tropism. Except for the Beaudette strain, other IBVs cannot infect mammalian cell lines. The limited cell tropism of other IBVs has hindered IBV vaccine development and research on the mechanisms of IBV infection. A novel Vero cell-adapted strain, HV80, has been previously reported. In this study, we constructed recombinants expressing the chimeric S glycoprotein, S1 or S2 subunit of strain H120 and demonstrated that mutations on S2 subunit are associated with the strain HV80 Vero cell adaptation. R687P or P687R substitution recombinants were constructed with the genome backbone of strains HV80 or H120. We found that the RRRR690/S motif at the S2' cleavage site is crucial to the Vero cell adaptation of strain HV80. Another six amino acid substitutions in the S2 subunit of the recombinants showed that the Q855H mutation induced syncytium formation. A transient transfection assay demonstrated the S glycoprotein with the PRRR690/S motif at the S2' cleavage site induced low-level cell-cell fusion, while H855Q substitution hindered cell-cell fusion and blocked cleavage event with S20 product. This study provides a basis for the construction of IBV recombinants capable of replicating in Vero cells, thus contributing to the advancement in the development of genetically engineered cell-based IBV vaccines.


Subject(s)
Infectious bronchitis virus , Mutation , Viral Tropism , Animals , Infectious bronchitis virus/genetics , Infectious bronchitis virus/physiology , Chlorocebus aethiops , Vero Cells , Spike Glycoprotein, Coronavirus/genetics , Amino Acid Substitution , Coronavirus Infections/virology , Coronavirus Infections/veterinary
9.
Pak J Pharm Sci ; 37(1): 139-145, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38741410

ABSTRACT

Liposomes, a nanoscale carrier, plays an important role in the delivery of drug, affects the in vivo efficacy of drugs. In this paper, silymarin(SM)-loaded liposomes was optimized using the response surface method (RSM), with entrapment efficiency (EE%) as an index. The formulation was optimized as follow: lecithin (7.8mg/mL), SM/lecithin (1/26) and lecithin/cholesterol (10/1). The optimized SM liposomes had a high EE (96.58 ±3.06%), with a particle size of 290.3 ±10.5nm and a zeta potential of +22.98 ±1.73mV. In vitro release tests revealed that SM was released in a sustained-release manner, primarily via diffusion mechanism. In vitro cytotoxicity studies demonstrated that the prepared SM liposomes had stronger inhibitory effects than the model drug. Overall, these results indicate that this liposome system is suitable for intravenous delivery to enhance the antitumor effects of SM.


Subject(s)
Lecithins , Liposomes , Particle Size , Silymarin , Silymarin/pharmacology , Silymarin/chemistry , Silymarin/administration & dosage , Humans , Lecithins/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/administration & dosage , Drug Liberation , Cell Line, Tumor , Cell Survival/drug effects , Cholesterol/chemistry , Chemistry, Pharmaceutical , Drug Compounding
10.
Bioresour Technol ; 401: 130716, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38641301

ABSTRACT

Oleanolic acid and its derivatives are widely used in the pharmaceutical, agricultural, cosmetic and food industries. Previous studies have shown that oleanolic acid production levels in engineered cell factories are low, which is why oleanolic acid is still widely extracted from traditional medicinal plants. To construct a highly efficient oleanolic acid production strain, rate-limiting steps were regulated by inducible promoters and the expression of key genes in the oleanolic acid synthetic pathway was enhanced. Subsequently, precursor pool expansion, pathway refactoring and diploid construction were considered to harmonize cell growth and oleanolic acid production. The multi-strategy combination promoted oleanolic acid production of up to 4.07 g/L in a 100 L bioreactor, which was the highest level reported.


Subject(s)
Oleanolic Acid , Saccharomyces cerevisiae , Oleanolic Acid/biosynthesis , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Bioreactors , Metabolic Engineering/methods , Genetic Engineering/methods , Promoter Regions, Genetic
11.
J Ethnopharmacol ; 332: 118245, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-38679399

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The process of atherosclerosis (AS) is complicated. Transcriptomics technology can assist in discovering the underlying mechanisms and exploring the key targets of Traditional Chinese Medicine (TCM) against atherosclerosis. AIM: This study aimed to investigate targets and signaling pathways significantly related to AS and the potential intervention targets of Xuefu Zhuyu decoction by transcriptomics. MATERIALS AND METHODS: AS models were established by subjecting ApoE-/-mice to an 8-week high-fat diet. Structural changes and plaque formation in the aortic root were observed using hematoxylin-eosin staining (HE staining), while Oil Red O staining was employed to visualize lipid deposition within the aortic root plaque. Movat staining and immunohistochemical staining were conducted to examine the components present in the aortic root plaque. Macrophage content within the plaque was observed through immunofluorescence. Additionally, mRNA sequencing was performed on aortic tissues to identify differentially expressed genes. Enrichment analysis was performed using GO and KEGG analysis. Visualization of the protein-protein interaction (PPI) network was achieved using Cytoscape 3.7.1 and STRING. Western blotting (WB) was employed to assess the protein expression of major differentially expressed genes in the aortic tissue. The drug freeze-dried powder of Xuefu Zhuyu decoction was prepared and the RAW264.7 cells were induced by lipopolysaccharide (LPS) to build an in vitro model. Real-time quantitative PCR was employed to measure the mRNA expression of major differential genes. RESULTS: After ApoE-/- mice were fed with an 8-week high-fat diet, observable changes included the thinning of the aortic root wall, the accumulation of foam cells within the plaque, and the formation of cholesterol crystals in the model group. Treatment with Xuefu Zhuyu (XFZY) decoction for 12 weeks significantly reduced the lipid deposition and the number of macrophages (P < 0.05) and significantly increased the collagen content within the plaque (P < 0.01). Enrichment analysis revealed a high enrichment of the Cytokine-cytokine receptor interaction pathway and Chemokine signaling pathway. Noteworthy genes involved in this response included Ccl12, Ccl22, Cx3cr1, Ccr7, Ccr2, Tnfrsf25, and Gdf5. Xuefu Zhuyu decoction significantly downregulated the expression of CX3CL1 and CX3CR1 (P < 0.05) and upregulated the expression of GDF5 (P < 0.01). Compared with control group, in cell models, the mRNA expressions of Ccl12, Ccl22, and Ccr2 were significantly upregulated (P < 0.05 or P < 0.01). Xuefu Zhuyu decoction significantly downregulated the expression of Ccl12, Ccl22, Cx3cr1, Ccr7 and Ccr2 (P < 0.05 or P < 0.01). CONCLUSION: Xuefu Zhuyu decoction demonstrates effective regulation of plaque components, retarding plaque progression and preserving plaque stability by modulating lipid metabolism and inflammatory responses. Subsequent transcriptome analysis identified the Cytokine-cytokine receptor interaction and Chemokine signaling pathway as potential key pathways for the therapeutic effects of Xuefu Zhuyu decoction. This insight not only provides crucial avenues for further exploration into the mechanisms underlying Xuefu Zhuyu decoction but also offers valuable perspectives and hypotheses for enhancing disease prevention and treatment strategies.


Subject(s)
Atherosclerosis , Diet, High-Fat , Drugs, Chinese Herbal , Signal Transduction , Animals , Drugs, Chinese Herbal/pharmacology , Atherosclerosis/drug therapy , Atherosclerosis/metabolism , Mice , Signal Transduction/drug effects , Male , Diet, High-Fat/adverse effects , Chemokines/metabolism , Chemokines/genetics , Gene Expression Profiling/methods , Mice, Knockout, ApoE , Mice, Inbred C57BL , Plaque, Atherosclerotic/drug therapy , Disease Models, Animal , Transcriptome/drug effects , Macrophages/drug effects , Macrophages/metabolism , Apolipoproteins E/genetics , Aorta/drug effects , Aorta/pathology
12.
Research (Wash D C) ; 7: 0328, 2024.
Article in English | MEDLINE | ID: mdl-38550778

ABSTRACT

Pixel-level structure segmentations have attracted considerable attention, playing a crucial role in autonomous driving within the metaverse and enhancing comprehension in light field-based machine vision. However, current light field modeling methods fail to integrate appearance and geometric structural information into a coherent semantic space, thereby limiting the capability of light field transmission for visual knowledge. In this paper, we propose a general light field modeling method for pixel-level structure segmentation, comprising a generative light field prompting encoder (LF-GPE) and a prompt-based masked light field pretraining (LF-PMP) network. Our LF-GPE, serving as a light field backbone, can extract both appearance and geometric structural cues simultaneously. It aligns these features into a unified visual space, facilitating semantic interaction. Meanwhile, our LF-PMP, during the pretraining phase, integrates a mixed light field and a multi-view light field reconstruction. It prioritizes considering the geometric structural properties of the light field, enabling the light field backbone to accumulate a wealth of prior knowledge. We evaluate our pretrained LF-GPE on two downstream tasks: light field salient object detection and semantic segmentation. Experimental results demonstrate that LF-GPE can effectively learn high-quality light field features and achieve highly competitive performance in pixel-level segmentation tasks.

13.
J Craniofac Surg ; 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38498013

ABSTRACT

This study aimed to introduce a surgery technique-Sommerlad-Furlow palatoplasty (SFP) and analyze the risk factors of velopharyngeal insufficiency (VPI) and palatal fistula after SFP. Cases after SFP under the age of 5 between 2011 and 2021 were reviewed, and the cases with complete follow-up information were included. Univariate and multivariate logistic regression were used to evaluate the effects of surgical age, surgery technique, surgeon's experience, and cleft type on velopharyngeal function and the occurrence of palatal fistula. SFP is a safe and effective procedure to increase the palatal length and reconstruct the levator veli palatini sling. The speech outcome after SFP was associated with cleft type and age at operation. Age = 1.285 years is the best cutoff value. The fistula occurrence was associated with cleft type only.

14.
Orthop Surg ; 16(5): 1073-1078, 2024 May.
Article in English | MEDLINE | ID: mdl-38488263

ABSTRACT

OBJECTIVES: Bankart lesion is one of the most common lesions of the glenohumeral joint. Several double-row suture methods were reported for Bankart repair, which could provide more stability, yet more motion limitation and complications. Therefore, we introduced a new double-row Bankart repair technique, key point double-row suture which used one anchor in the medial line. The purpose of this article is to investigate the clinical outcomes of this new method and to compare it with single-row suture. METHODS: Seventy-eight patients receiving key point double-row suture or single-row suture from October 2010 to June 2014 were collected retrospectively. The basic information including gender, age, dominant arm, and number of episodes of instability was collected. Before surgery, the glenoid bone loss was measured from the CT scan. The visual analogue scale, American shoulder and elbow surgeons, the University of California at Los Angeles shoulder scale, and subjective shoulder value were valued before surgery and at the last follow-up. RESULTS: Forty-four patients (24 patients receiving single-row suture and 20 patients receiving key point double-row suture) were followed up successfully. The follow-up period was 9.2 ± 1.1 years (range, 7.8-11.4 years). At the last follow-up, no significant differences were detected for any of the clinical scores. The recurrence rate was 12.5% for the single-row group and 10% for the double-row group, respectively (p = 0.795) 14 patients (31.8%) in the single-row group and nine patients (26.5%) in the double-row group were tested for active range of motion. A statistically significant difference was found only for the internal rotation at 90° abduction (48.9° for single-row and 76.7° for key point double-row, p = 0.033). CONCLUSION: The key point double-row sutures for Bankart lesions could achieve similar long-term outcomes compared with single-row suture, and one medial anchor did not result in a limited range of motion. The low recurrence rate and previous biomechanical results also indicate the key point double-row suture is a reliable method.


Subject(s)
Joint Instability , Suture Techniques , Humans , Female , Male , Adult , Retrospective Studies , Case-Control Studies , Joint Instability/surgery , Joint Instability/physiopathology , Bankart Lesions/surgery , Range of Motion, Articular/physiology , Young Adult , Shoulder Joint/surgery , Shoulder Joint/physiopathology , Middle Aged , Adolescent , Suture Anchors , Arthroscopy/methods
15.
Front Physiol ; 15: 1349253, 2024.
Article in English | MEDLINE | ID: mdl-38505709

ABSTRACT

Introduction: Muscle and bone constitute the two main parts of the musculoskeletal system and generate an intricately coordinated motion system. The crosstalk between muscle and bone has been under investigation, leading to revolutionary perspectives in recent years. Method and results: In this review, the evolving concept of muscle-bone interaction from mechanical coupling, secretory crosstalk to stem cell exchange was explained in sequence. The theory of mechanical coupling stems from the observation that the development and maintenance of bone mass are largely dependent on muscle-derived mechanical loads, which was later proved by Wolff's law, Utah paradigm and Mechanostat hypothesis. Then bone and muscle are gradually recognized as endocrine organs, which can secrete various cytokines to modulate the tissue homeostasis and remodeling to each other. The latest view presented muscle-bone interaction in a more direct way: the resident mesenchymal stromal cell in the skeletal muscle, i.e., fibro-adipogenic progenitors (FAPs), could migrate to the bone injury site and contribute to bone regeneration. Emerging evidence even reveals the ectopic source of FAPs from tissue outside the musculoskeletal system, highlighting its dynamic property. Conclusion: FAPs have been established as the critical cell connecting muscle and bone, which provides a new modality to study inter-tissue communication. A comprehensive and integrated perspective of muscle and bone will facilitate in-depth research in the musculoskeletal system and promote novel therapeutic avenues in treating musculoskeletal disorders.

16.
J Med Chem ; 67(6): 4583-4602, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38498304

ABSTRACT

Toll-like receptor (TLR) 2 is a transmembrane receptor that participates in the innate immune response by forming a heterodimer with TLR1 or TLR6. TLR2 agonists play an important role in tumor therapy. Herein, we synthesized a series of 3-(2H-chromen-3-yl)-5-aryl-1,2,4-oxadiazole derivatives and identified WYJ-2 as a potent small and selective molecule agonist of TLR2/1, with an EC50 of 18.57 ± 0.98 nM in human TLR2 and TLR1 transient-cotransfected HEK 293T cells. WYJ-2 promoted the formation of TLR2/1 heterodimers and activated the nuclear factor kappa B (NF-κB) signaling pathway. Moreover, our study indicated that WYJ-2 could induce pyroptosis in cancer cells, mediated by activating the NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome. WYJ-2 exhibited effective anti-non-small cell lung cancer (NSCLC) activity in vitro and in vivo. The discovery that activating TLR2/1 induces pyroptosis in cancer cells may highlight the prospects of TLR2/1 agonists in cancer treatment in the future.


Subject(s)
Lung Neoplasms , Toll-Like Receptor 2 , Humans , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 1/metabolism , Lung Neoplasms/drug therapy , Signal Transduction , NF-kappa B/metabolism
17.
Neural Regen Res ; 19(10): 2157-2174, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38488550

ABSTRACT

Traumatic brain injury is a serious medical condition that can be attributed to falls, motor vehicle accidents, sports injuries and acts of violence, causing a series of neural injuries and neuropsychiatric symptoms. However, limited accessibility to the injury sites, complicated histological and anatomical structure, intricate cellular and extracellular milieu, lack of regenerative capacity in the native cells, vast variety of damage routes, and the insufficient time available for treatment have restricted the widespread application of several therapeutic methods in cases of central nervous system injury. Tissue engineering and regenerative medicine have emerged as innovative approaches in the field of nerve regeneration. By combining biomaterials, stem cells, and growth factors, these approaches have provided a platform for developing effective treatments for neural injuries, which can offer the potential to restore neural function, improve patient outcomes, and reduce the need for drugs and invasive surgical procedures. Biomaterials have shown advantages in promoting neural development, inhibiting glial scar formation, and providing a suitable biomimetic neural microenvironment, which makes their application promising in the field of neural regeneration. For instance, bioactive scaffolds loaded with stem cells can provide a biocompatible and biodegradable milieu. Furthermore, stem cells-derived exosomes combine the advantages of stem cells, avoid the risk of immune rejection, cooperate with biomaterials to enhance their biological functions, and exert stable functions, thereby inducing angiogenesis and neural regeneration in patients with traumatic brain injury and promoting the recovery of brain function. Unfortunately, biomaterials have shown positive effects in the laboratory, but when similar materials are used in clinical studies of human central nervous system regeneration, their efficacy is unsatisfactory. Here, we review the characteristics and properties of various bioactive materials, followed by the introduction of applications based on biochemistry and cell molecules, and discuss the emerging role of biomaterials in promoting neural regeneration. Further, we summarize the adaptive biomaterials infused with exosomes produced from stem cells and stem cells themselves for the treatment of traumatic brain injury. Finally, we present the main limitations of biomaterials for the treatment of traumatic brain injury and offer insights into their future potential.

18.
Int J Hyg Environ Health ; 257: 114342, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38401403

ABSTRACT

Growing evidences supported that arsenic exposure contributes to non-alcoholic fatty liver disease (NAFLD) risk, but findings were still inconsistent. Additionally, once absorbed, arsenic is methylated into monomethyl and dimethyl arsenicals. However, no studies investigated the association of arsenic metabolism with NAFLD. Our objectives were to evaluate the associations of arsenic exposure and arsenic metabolism with NAFLD prevalence. We conducted a case-control study with 1790 participants derived from Dongfeng-Tongji cohort and measured arsenic species (arsenite, arsenate, monomethylarsonate [MMA], dimethylarsinate [DMA], and arsenobetaine) in urine. Arsenic exposure (∑As) was defined as the sum of inorganic arsenic (iAs), MMA, and DMA. Arsenic metabolism was evaluated as the proportions of inorganic-related species (iAs%, MMA%, and DMA%) and methylation efficiency ratios (primary methylation index [PMI], secondary methylation index [SMI]). NAFLD was diagnosed by liver ultrasound. Logistic regression was used to evaluate the associations. The median of ∑As was 13.24 µg/g creatinine. The ∑As showed positive and nonlinear association with moderate/severe NAFLD (OR: per log-SD = 1.33, 95% CI: [1.03,1.71]; Pfor nonlinearity = 0.021). The iAs% (OR: per SD = 1.16, 95% CI: [1.03,1.30]) and SMI (OR: per log-SD = 1.16, 95% CI: [1.03,1.31]) showed positive while MMA% (OR: per SD = 0.80, 95% CI: [0.70,0.91]) and PMI (OR: per log-SD = 0.86, 95% CI: [0.77,0.96]) showed inverse associations with NAFLD. Moreover, the ORs (95% CI) of NAFLD for each 5% increase in iAs% was 1.36 (1.17,1.58) when MMA% decreased and 1.07 (1.01,1.13) when DMA% decreased; and for each 5% increase in MMA%, it was 0.74 (0.63,0.86) and 0.79 (0.69,0.91) when iAs% and DMA% decreased, respectively. The results suggest that inorganic arsenic exposure is positively associated with NAFLD risk and arsenic methylation efficiency plays a role in the NAFLD. The findings provide clues to explore potential interventions for the prevention of NAFLD. Prospective studies are needed to validate our findings.


Subject(s)
Arsenic , Arsenicals , Non-alcoholic Fatty Liver Disease , Humans , Arsenic/analysis , Non-alcoholic Fatty Liver Disease/epidemiology , Case-Control Studies , Environmental Exposure , Arsenicals/urine , Cacodylic Acid/urine
19.
Natl Sci Rev ; 11(3): nwad314, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38312384

ABSTRACT

Flexible devices and functional systems with elaborated three-dimensional (3D) architectures can endow better mechanical/electrical performances, more design freedom, and unique functionalities, when compared to their two-dimensional (2D) counterparts. Such 3D flexible devices/systems are rapidly evolving in three primary directions, including the miniaturization, the increasingly merged physical/artificial intelligence and the enhanced adaptability and capabilities of heterogeneous integration. Intractable challenges exist in this emerging research area, such as relatively poor controllability in the locomotion of soft robotic systems, mismatch of bioelectronic interfaces, and signal coupling in multi-parameter sensing. By virtue of long-time-optimized materials, structures and processes, natural organisms provide rich sources of inspiration to address these challenges, enabling the design and manufacture of many bioinspired 3D flexible devices/systems. In this Review, we focus on bioinspired 3D flexible devices and functional systems, and summarize their representative design concepts, manufacturing methods, principles of structure-function relationship and broad-ranging applications. Discussions on existing challenges, potential solutions and future opportunities are also provided to usher in further research efforts toward realizing bioinspired 3D flexible devices/systems with precisely programmed shapes, enhanced mechanical/electrical performances, and high-level physical/artificial intelligence.

20.
Sci Transl Med ; 16(734): eade7347, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38354227

ABSTRACT

Nonalcoholic fatty liver (NAFL) remains relatively benign, but high-risk to end-stage liver diseases become highly prevalent when it progresses into nonalcoholic steatohepatitis (NASH). Our current understanding of the development of NAFL to NASH remains insufficient. In this study, we revealed MAP kinase (MAPK) activation as the most notable molecular signature associated with NASH progression across multiple species. Furthermore, we identified suppressor of IKKε (SIKE) as a conserved and potent negative controller of MAPK activation. Hepatocyte-specific overexpression of Sike prevented NASH progression in diet- and toxin-induced mouse NASH models. Mechanistically, SIKE directly interacted with TGF-ß-activated kinase 1 (TAK1) and TAK1-binding protein 2 (TAB2) to interrupt their binding and subsequent TAK1-MAPK signaling activation. We found that indobufen markedly up-regulated SIKE expression and effectively improved NASH features in mice and macaques. These findings identify SIKE as a MAPK suppressor that prevents NASH progression and provide proof-of-concept evidence for targeting the SIKE-TAK1 axis as a potential NASH therapy.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Mice , Non-alcoholic Fatty Liver Disease/prevention & control , Non-alcoholic Fatty Liver Disease/metabolism , Signal Transduction/physiology , Hepatocytes/metabolism , Gene Expression Profiling , Mitogen-Activated Protein Kinases/metabolism , Liver/metabolism , Intracellular Signaling Peptides and Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...