Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Chemosphere ; : 142761, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969215

ABSTRACT

The presence of microplastics (MPs) products and particles in the environment can significantly impact the human body. Most MPs that enter the environment also enter the water cycle. During sunlight light irradiation (especially ultraviolet (UV) part) or UV disinfection, many of these MPs, particularly those rich in surface functional groups like thermoplastic polyurethanes (TPU), undergo physicochemical changes that can affect the formation of disinfection byproducts (DBPs). This study investigates the physicochemical changes of TPU in water after exposure to UV irradiation and incubation in the dark, as well as the formation of DBPs after chlorination. The results show that TPU undergo chain breakage, oxidation, and cross-linking when exposed to UV irradiation in an aqueous system. This leads to fragmentation into smaller particles, which facilitates the synthesis of DBPs. Subsequent research has demonstrated that the TPU leaching solution produces a significantly higher DBP content than the chlorination of TPU MPs, particularly at high concentrations of CHCl3. Therefore, it is important to give greater consideration to the soluble DBP precursors released by TPU.

2.
Chemosphere ; 362: 142650, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38901703

ABSTRACT

Biodegradable plastics (BPs) have seen a continuous increase in annual production and application due to their environmentally sustainable characteristics. However, research on the formation of disinfection byproducts (DBPs) from biodegradable microplastics (BMPs) during chlorination is limited, and the effects of aqueous solution chemistry on this process have yet to be explored. Therefore, two biodegradable microplastics, polylactic acid (PLA) and polybutylene adipate terephthalate (PBAT), were investigated in this study to examine the changes in their physicochemical properties before and after chlorination, and the formation of DBPs under different environmental conditions. The results showed that PLA was more chlorine-responsive, and generated more DBPs. The pH converted some of the intermediates into more stable DBPs by affecting the concentration of HClO and base-catalyzed reactions, whereas ionic strength slightly reduced DBP concentration by ion adsorption and promoting the aggregation of BMPs. Finally, since PLA has a slightly greater volume of mesopores and micropores compared to PBAT, it may more effectively adsorb DBP precursors beyond natural organic matter (NOM), such as some anthropogenic pollutants, thus potentially decreasing the formation of chlorinated DBPs in surface water. This research explored the potentiality for DBP formation by BMPs under different water quality conditions during the disinfection process, which is useful for assessing the environmental hazards of BMPs.

3.
J Hazard Mater ; 476: 135040, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38943888

ABSTRACT

Graphene oxide (GO) is widely employed due to its outstanding properties, leading to an increasing release into the environment and natural waters. Although some studies have reported on the photo-transformation of GO, its behavior in complex natural waters remains inadequately explored. This study demonstrates that different types of ions may promote the photoreduction of GO in the order of Ca2+ > K+ > NO3- > Na+ by interacting with the functional groups on the surface of GO, and the photoreduction is enhanced with increasing ion concentrations. Additionally, natural organic matter (NOM) can inhibit the photoreduction of GO by scavenging reactive oxygen species. However, with increasing NOM concentrations (≥ 5 mgC/L), more NOM adsorb onto the surface of GO through hydrogen bonding, Lewis acid-base interactions, and π-π interactions, thereby enhancing the photoreduction of GO. On this basis, our results further indicate that the combined effects of different ions, such as Ca2+, Mg2+, NOM, and other complex hydrochemical conditions in different natural waters can promote the photoreduction of GO, resulting in a reduction in oxygen functional groups and the formation of defects. This study provides a theoretical basis for assessing the long-term transformation and fate of GO in natural waters.

4.
J Inflamm Res ; 16: 4661-4677, 2023.
Article in English | MEDLINE | ID: mdl-37872954

ABSTRACT

Ferroptosis is a new cell fate decision discovered in recent years. Unlike apoptosis, autophagy or pyroptosis, ferroptosis is characterized by iron-dependent lipid peroxidation and mitochondrial morphological changes. Ferroptosis is involved in a variety of physiological and pathological processes. Since its discovery, ferroptosis has been increasingly studied concerning bone-related diseases. In this review, we focus on the latest research progress and prospects, summarize the regulatory mechanisms of ferroptosis, and discuss the role of ferroptosis in the pathogenesis of bone-related diseases, such as osteoporosis (OP), osteoarthritis (OA), rheumatoid arthritis (RA), and osteosarcoma (OS), as well as its therapeutic potential.

5.
Hepatol Commun ; 7(10)2023 10 01.
Article in English | MEDLINE | ID: mdl-37695088

ABSTRACT

Autoimmune hepatitis (AIH) is a chronic autoimmune liver disease that can lead to hepatocyte destruction, inflammation, liver fibrosis, cirrhosis, and liver failure. The diagnosis of AIH requires the identification of lymphoblast cell interface hepatitis and serum biochemical abnormalities, as well as the exclusion of related diseases. According to different specific autoantibodies, AIH can be divided into AIH-1 and AIH-2. The first-line treatment for AIH is a corticosteroid and azathioprine regimen, and patients with liver failure require liver transplantation. However, the long-term use of corticosteroids has obvious side effects, and patients are prone to relapse after drug withdrawal. Autoimmune diseases are characterized by an imbalance in immune tolerance of self-antigens, activation of autoreactive T cells, overactivity of B cells, and increased production of autoantibodies. CD4+ T cells are key players in adaptive immunity and can secrete cytokines, activate B cells to produce antibodies, and influence the cytotoxicity of CD8+ T cells. According to their characteristics, CD4+ T cells can be divided into different subsets. In this review, we discuss the changes in T helper (Th)1, Th2, Th17, Th9, Th22, regulatory T cell, T follicular helper, and T peripheral helper cells and their related factors in AIH and discuss the therapeutic potential of targeting CD4+ T-cell subsets in AIH.


Subject(s)
Hepatitis, Autoimmune , Liver Failure , Humans , Hepatitis, Autoimmune/drug therapy , CD4-Positive T-Lymphocytes , T-Lymphocyte Subsets , Liver Cirrhosis , Autoantibodies
6.
Sci Bull (Beijing) ; 68(9): 946-960, 2023 May 15.
Article in English | MEDLINE | ID: mdl-37085399

ABSTRACT

The Southern Ocean has warmed substantially, and up to early 21st century, Antarctic stratospheric ozone depletion and increasing atmospheric CO2 have conspired to intensify Southern Ocean warming. Despite a projected ozone recovery, fluxes to the Southern Ocean of radiative heat and freshwater from enhanced precipitation and melting sea ice, ice shelves, and ice sheets are expected to increase, as is a Southern Ocean westerly poleward intensification. The warming has far-reaching climatic implications for melt of Antarctic ice shelf and ice sheet, sea level rise, and remote circulations such as the intertropical convergence zone and tropical ocean-atmosphere circulations, which affect extreme weathers, agriculture, and ecosystems. The surface warm and freshwater anomalies are advected northward by the mean circulation and deposited into the ocean interior with a zonal-mean maximum at ∼45°S. The increased momentum and buoyancy fluxes enhance the Southern Ocean circulation and water mass transformation, further increasing the heat uptake. Complex processes that operate but poorly understood include interactive ice shelves and ice sheets, oceanic eddies, tropical-polar interactions, and impact of the Southern Ocean response on the climate change forcing itself; in particular, limited observations and low resolution of climate models hinder rapid progress. Thus, projection of Southern Ocean warming will likely remain uncertain, but recent community effort has laid a solid foundation for substantial progress.

7.
Environ Pollut ; 323: 121254, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36773686

ABSTRACT

The large number of microplastics (MPs) that appear in the environment has drawn much attention. Few studies, however, have examined the transformation of MPs in water treatment processes and their effects on environmental pollutants. In this study, the alteration of the physicochemical characteristics of polyethylene and thermoplastic polyurethane upon chlorination, as well as the influence of this alteration on contaminants, were investigated. The findings indicated that microplastics underwent significant morphology and O-functional groups changes during chlorination. It is noteworthy that the mechanisms controlling the chlorination treatment of the two MPs are clearly different. The results of aggregation and adsorption experiments showed that the chlorination treatment enhanced the aggregation ability of the MPs in brine and their interaction with Cr(VI). The present discoveries further suggested that water treatment could alter the migration capacity of microplastics and the distribution of contaminants in the aqueous environment by altering the adsorption of microplastics to the contaminants.


Subject(s)
Microplastics , Water Pollutants, Chemical , Chromium , Plastics , Adsorption , Halogenation , Water Pollutants, Chemical/analysis
8.
Nat Commun ; 13(1): 5457, 2022 09 17.
Article in English | MEDLINE | ID: mdl-36115856

ABSTRACT

The role of the tropical Pacific Ocean and its linkages to the southern hemisphere during the last deglacial warming remain highly controversial. Here we explore the evolution of Pacific horizontal and vertical thermal gradients over the past 30 kyr by compiling 340 sea surface and 7 subsurface temperature records, as well as one new ocean heat content record. Our records reveal that La Niña-like conditions dominated during the deglaciation as a result of the more intense warming in the western Pacific warm pool. Both the subsurface temperature and ocean heat content in the warm pool rose earlier than the sea surface temperature, and in phase with South Pacific subsurface temperature and orbital precession, implying that heat exchange between the tropical upper water column and the extratropical Southern Ocean facilitated faster warming in the western Pacific. Our study underscores the key role of the thermal coupling between the warm pool and the Southern Ocean and its relevance for future global warming.


Subject(s)
Global Warming , Seawater , Pacific Ocean , Temperature , Water
9.
Sci Total Environ ; 849: 157800, 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-35934036

ABSTRACT

Considering the large volumes of treated water and incomplete elimination of pollutants, wastewater treatment plants (WWTPs) remain a considerable source of microplastics (MPs). Chlorine, the most frequently used disinfectant in WWTPs, has a strong oxidizing impact on MPs. However, little is documented, to date, about the impact of chlorination on the transformation of MPs and the subsequent environmental behaviors of the chlorinated MPs when released into the aquatic environment. This study explored the response of the physicochemical properties of specific thermoplastics, namely polyurethane (TPU) MPs and polystyrene (PS) MPs, to chlorination and their emerging pollutant [tetracycline (TC)] adsorption behavior in aqueous solution. The results indicated that the O/C ratio of the MP surface did not significantly change, and that there were increases in the O-containing functional groups of the TPU and PS MPs, after chlorination. The surface area of the chlorinated TPU MPs increased by 45 %, and that of the chlorinated PS increased by 21 %, compared with the pristine ones, which contributed to the TC adsorption. The adsorption isotherm fitting parameters suggested that the chlorinated TPU fitted the multilayer adsorption, and the chlorinated PS was inclined to the monolayer adsorption. The relative abundance of the O-containing functional groups, on the TPU surface, led to the release of CHCl3 molecules, and the clear surface irregularities and fissures occurred after chlorine treatment. No fissures were found on the surface of the chlorinated PS MPs. The hydrophobicity and electrostatic adsorption were proved to be the major impacts on the TC adsorption of the chlorinated MPs, and the subsequently formed hydrogen bonds led to the stronger adsorption capacity of the chlorinated TPU than the chlorinated PS MPs.


Subject(s)
Disinfectants , Environmental Pollutants , Water Pollutants, Chemical , Adsorption , Anti-Bacterial Agents , Chlorine , Halogenation , Microplastics , Plastics , Polystyrenes , Polyurethanes , Tetracycline , Water , Water Pollutants, Chemical/analysis
10.
Chemosphere ; 303(Pt 2): 135102, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35623421

ABSTRACT

With the increased use of microplastics in modern society, tonnes of various microplastics (MPs) end up in natural and engineered water systems if not properly handled. Being a class of organics, the role of MPs during the disinfection of water treatment systems is still unclear at this stage. In the current experimental study, the formation of 6 typical disinfection by-products (DBPs) was investigated using varying concentrations of polypropylene (PP) MPs under various aquatic chemistry conditions and disinfectants. All investigated DBPs were detected, during the chlorination of PP, with an average CHCl3 concentration of 378 µg/g, and other DBPs, including CHCl2Br, TCA, DCAN, 1,1-DCP, and TCNM, were present in less than 60 µg/g, on average. When PP coexisted with Suwannee River Fulvic acid (SRFA), a suppression of DBP formation was observed with a 56% net reduction compared with a condition of PP alone. The dynamic balance of being a DBP precursor, or a scavenger, by absorbing the organics of PP is subjected to aquatic chemistry. Increasing the pH decreases the HOCl concentrations, reducing the PP oxidation capacity and DBP formation. As salinity increases, the aggregation of PP can reduce the reaction sites on the surface of PP and enhance the adsorption of SRFA, hence lowering the formation of DBPs.


Subject(s)
Disinfectants , Water Pollutants, Chemical , Water Purification , Disinfection , Halogenation , Microplastics , Plastics , Polypropylenes , Water Pollutants, Chemical/analysis
11.
Chemosphere ; 296: 134067, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35216978

ABSTRACT

Microplastics have attracted extensive attention and concern because they inflict damage on human beings and the environment. When the microplastics enter the water system, they inevitably flow into the water treatment system and encounter disinfectants during the disinfection procedure. Chlorine can react with microplastics to form different kinds of disinfection byproducts (DBPs). O-containing functional groups on the surface of microplastics may play a major role in DBP formation. Without O-containing functional groups, microplastics can also form DBPs but with totally different mechanisms. Reactive oxygen species (ROS, i.e., •OH) and reactive chlorine substances (RCS, i.e., Cl• and ClO•) may attack the microplastics and form DBP precursors. With relatively low surface area and very little pore volume, microplastics cannot affect the DBP formation between Suwannee River fulvic acid (SRFA) and chlorine. When SRFA exists, microplastics with few O-containing functional groups can hardly form DBPs because of the inhibition of ROS and RCS.


Subject(s)
Disinfectants , Water Pollutants, Chemical , Water Purification , Chlorine/analysis , Disinfection , Halogenation , Halogens , Humans , Microplastics , Plastics , Reactive Oxygen Species , Water Pollutants, Chemical/analysis , Water Purification/methods
12.
Sci Total Environ ; 820: 153243, 2022 May 10.
Article in English | MEDLINE | ID: mdl-35065118

ABSTRACT

Characterizing the vertical distribution of chlorophyll a in the water column in each oceanic region is crucial for accurate assessment of depth-integrated phytoplankton biomass. In this study, the characteristics of the subsurface chlorophyll maximum (SCM) in the South China Sea (SCS) during the boreal summer were investigated by using bio-optical and hydrological data collected during four cruises from 2008 to 2015. During the boreal summer, a well-developed SCM layer was found to be a prominent feature in the SCS, with the thickness, depth, and magnitude of the SCM exhibiting large spatial variability. The vertical position of the SCM varied between 11 and 99 m, with an average value of 53 m. Light attenuation played a fundamental role in determining the depth (ZSCM) and magnitude of the SCM (Chlmax), as reflected by their relationships with the euphotic zone depth (Zeu). However, because significant positive correlations were found between ZSCM and the depth of potential density at 23 kg m-3 (Zσ=23), physical processes were inferred to be more important in modulating the fluctuation of ZSCM, especially in open-ocean areas. Anticyclonic eddies, which act to deepen the nutricline by means of isopyncnal displacement, may play a role in aggravating nutrient limitation in the SCM layer, which leads to deepening of ZSCM, weakening of Chlmax, and a fall in the total integrated chlorophyll a within the euphotic layer (ChlintZeu). Knowledge of ocean physical conditions and the variability of ZSCM should be taken into consideration to improve the accuracy of ChlintZeu estimates based on the surface chlorophyll a concentration (Chlsurf), especially when Chlsurf is very low. Our assessment of SCM parameters provides the basis for a better understanding and quantification of their role in primary production estimation within the SCS.


Subject(s)
Chlorophyll , Seawater , China , Chlorophyll A , Oceans and Seas , Phytoplankton
13.
Ecol Evol ; 8(10): 4932-4948, 2018 May.
Article in English | MEDLINE | ID: mdl-29876071

ABSTRACT

The South China Sea (SCS) is the largest marginal sea in the western tropical Pacific Ocean and is characterized by complex physicochemical environments. To date, the biogeographic patterns of the microbial communities have rarely been reported at a basin scale in the SCS. In this study, the bacterial assemblages inhabiting the epipelagic zone across 110°E to 119°E along 14°N latitude were uncovered. The vertical stratification of both bacterial taxa and their potential functions were revealed. These results suggest that the water depth-specific environment is a driver of the vertical bacterioplankton distribution. Moreover, the bacterial communities were different between the eastern stations and the western stations, where the environmental conditions were distinct. However, the mesoscale eddy did not show an obvious effect on the bacterial community due to the large distance between the sampling site and the center of the eddy. In addition to the water depth and longitudinal location of the samples, the heterogeneity of the phosphate and salinity concentrations also significantly contributed to the variance in the epipelagic bacterial community in the SCS. To the best of our knowledge, this study is the first to report that the variability in epipelagic bacterioplankton is driven by the physicochemical environment at the basin scale in the SCS. Our results emphasize that the ecological significance of bacterioplankton can be better understood by considering the relationship between the biogeographic distribution of bacteria and the oceanic dynamics processes.

SELECTION OF CITATIONS
SEARCH DETAIL
...