Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Oncol Res Treat ; 41(12): 762-768, 2018.
Article in English | MEDLINE | ID: mdl-30458455

ABSTRACT

BACKGROUND: The role of microRNA-133a (miR-133a) in non-small cell lung cancers (NSCLCs) is controversial. Thus, we conducted a comprehensive study based on meta-analysis and The Cancer Genome Atlas (TCGA) database. METHODS: Publications were searched in both English and Chinese databases, and meta-analysis was performed using Stata 12.0. The clinical value of miR-133a in NSCLC was investigated by collecting and calculating data from the TCGA database, and the statistical analysis was performed in R 3.5.0. RESULTS: 5 studies with 364 cases were included in this meta-analysis. The combined pooled result showed that high expression of miR-133a was associated with a favorable survival outcome in NSCLC patients (hazard ratio 0.561, 95% confidence interval 0.396-0.794, p = 0.001). Meanwhile, a total of 984 NSCLC patients were extracted from the TCGA database. Results showed an area under the ROC curve value for miR-133a-3p of 0.902, and the expression of miR-133a-3p was linked with clinicopathologic parameters of NSCLC (p < 0.05), including sex, age, social status, and lymph node metastasis. CONCLUSION: Our study indicated that miR-133a might act as a tumor suppressor and be a valuable independent prognostic and diagnostic biomarker for NSCLC, and NSCLC patients with high expression of miR-133 might have a better prognosis.


Subject(s)
Biomarkers, Tumor/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/pathology , MicroRNAs/metabolism , Carcinoma, Non-Small-Cell Lung/mortality , Databases, Genetic , Datasets as Topic , Genes, Tumor Suppressor , Humans , Lung/pathology , Lung Neoplasms/mortality , Prognosis , Survival Analysis
2.
Bioorg Med Chem Lett ; 23(5): 1462-6, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23337597

ABSTRACT

Some polyoxometalate (POM) clusters have demonstrated attractive anticancer properties. Unfortunately, their cytotoxicity upon normal cell is one of fateful side effects obstructing their further clinic application as inorganic drugs. In this communication, we report a new approach to create hybrid drugs potentially for cancer therapeutics. At first, the POM cluster bioconjugates were created by attaching the bioactive ligands on an amine grafted POM via simple amidation reaction. The cytotoxicity study with breast cancer cells (MCF-7 and MDA-MB-231) and non-cancerous breast epithelial cell (MCF-10A) showed that rationally selected ligands with cancer-cell targeting ability on POM-biomolecule conjugates can impart enhanced anti-tumor activity and selectivity, thus representing a new concept to develop novel POM-biomolecule hybrid drugs with the potential synergistic effect: increased bioactivity and lower side effect.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Organometallic Compounds/chemistry , Organometallic Compounds/pharmacology , Tungsten Compounds/chemistry , Tungsten Compounds/pharmacology , Breast Neoplasms/drug therapy , Cations/chemistry , Cell Line, Tumor , Drug Design , Female , Humans , MCF-7 Cells , Models, Molecular
SELECTION OF CITATIONS
SEARCH DETAIL
...