Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Pathol Res Pract ; 223: 153460, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33971544

ABSTRACT

Laryngeal squamous cell carcinoma (LSCC), is the second most common malignant cancer of the head and neck after oral cavity cancer. Laryngeal cancer is associated with huge socio-economic burden worldwide. Studies have widely explored the role of non-coding RNAs, especially microRNAs and long non-coding RNAs in pathogenesis of laryngeal cancer. In addition, several studies have explored the mechanism and function of circRNAs. CircRNAs has higher stability and more extensive function models, including combining miRNA as sponge, modifying transcription, and even regulating protein translation have been developed. Therefore, circRNAs is applied as an excellent diagnostic tool and a promising candidate for development of cancer therapies. This study reviews the biogenesis and function of circRNAs, explores potential mechanism of circRNAs in LSCC, and implications and challenges in LSCC research.


Subject(s)
Biomarkers, Tumor/metabolism , Laryngeal Neoplasms/metabolism , RNA, Circular/metabolism , Squamous Cell Carcinoma of Head and Neck/metabolism , Animals , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , Humans , Laryngeal Neoplasms/genetics , Laryngeal Neoplasms/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics , Signal Transduction , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/pathology , Transcription, Genetic
2.
J Nanosci Nanotechnol ; 21(2): 1307-1314, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33183477

ABSTRACT

Fe3O4 materials have many crystal forms, and the morphology of their nanomaterials is more diverse. Under the influence of nano-effects, they exhibit unique physical and chemical properties. The synthesized Fe3O4 materials with different morphologies have different properties. They are widely used in related fields such as electromagnetics, chemical engineering, catalysis, sensors, acoustics, medicine, environmental protection and so on. Choosing the appropriate contrast agent to display the anatomical characteristics of diseased and normal tissue is an important thing before using MRI (Magnetic Resonance Imaging) technology. At present, Gd-DTPA is a commonly used magnetic contrast agent in clinical practice, but Gd-DTPA has obvious shortcomings, such as short circulation time, non-specific distribution, and high price. In comparison, the superparamagnetic iron oxide nanocrystals have a high specific distribution in living tissues, mainly concentrated in reticular endothelial cells-rich tissues and organs, such as liver, spleen, lymph nodes and bone marrow. This study analyzed the imaging characteristics of 21 patients with unilateral benign sphenoid sinus disease who were confirmed by nasal endoscopic surgery and postoperative pathology. Among the 21 patients with unilateral benign sphenoid sinus lesions, 7 cases of them had cysts. Those with altered sphenoid sinus cavity expansion may be accompanied by thinning of bone resorption. MRI manifested as long T1 and long T2 irregular spherical signal shadows. 8 cases of them are fungal lesions. MRI showed mixed signals are in the sphenoid sinus, the flaky exudation showed a high signal, and the fungal nodule showed a low T2WI signal. In the 3 cases of cerebrospinal fluid rhinorrhea, MRI showed a line between the high-signal shadow of the cerebrospinal fluid and the high-signal liquid shadow in the sinuses. High signal and shadow are connected, and other tissues (brain tissue, nasal mucosa) show low signal. Fe3O4-based MRI technology can improve imaging quality and diagnostic efficiency.


Subject(s)
Butterflies , Nanostructures , Animals , Endothelial Cells , Humans , Magnetic Resonance Imaging , Sphenoid Sinus
3.
Materials (Basel) ; 13(17)2020 Aug 20.
Article in English | MEDLINE | ID: mdl-32825256

ABSTRACT

Because of the tensile strength decreasing of the friction stir welded wrought magnesium (Mg) alloy compared to the base material, the reasons for the failure of weld has been focused on. After the fracture in transverse tension, the crack went through the welded joint from the center of the weld to the transition zone between the thermal-mechanical affected zone and weld zone. In the present study, the microstructure characteristics and its effect on the facture in the triple junction region is investigated. Based on the metallography and the electron back-scattered diffraction (EBSD) technology, it was observed that a twin band extended from the triple junction region to the middle of weld. The profuse twinning in the twin band was considered to play an important role on the crack propagation from the stir zone edge to the crown zone.

4.
J Nanosci Nanotechnol ; 20(10): 6026-6032, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32384948

ABSTRACT

To study the growth inhibition and cell cycle changes in nasopharyngeal carcinoma (CNE1) cells after transfection with p53 gene. A mixture of nano-liposomes and plasmid containing p53 was used for transfecting CNE1 cells. Cellular apoptosis was examined after transfection using the CCK-8 reagent method with flow cytometry. The results showed that a ratio of nanoliposome/p-ORF-GFP of 3.5:1 showed the highest transfection efficiency in CNE1 cells. The cells transfected with a mixture of composites in this proportion showed significant apoptosis of up to 50-70%. In addition, we observed that cell cycle changes-measured using flow cytometry-as well as cellular apoptosis were accelerated after administration of composites. The CCK-8 kit was used to determine the viability of nano-liposome-encapsulated p53 transfected cells. In vitro experiments showed that the combination significantly inhibited the growth of CNE1 cells with an inhibition rate of approximately 63.8%. Therefore, the nanocomposites have a significant effect on inhibiting the growth of CNE1 cells. Through the investigation of apoptosis and cell cycle changes in CNE1 cells we found that the nanoliposome-encapsulated p53 gene can inhibit growth in these cells, and might therefore serve as a novel treatment strategy for adjuvant treatment of nasopharyngeal carcinoma and ca also reduce incompatibility issues with radiotherapy and chemotherapy. This method can also provide technical and theoretical support for the development of novel drugs.


Subject(s)
Nasopharyngeal Neoplasms , Apoptosis , Cell Cycle , Cell Line, Tumor , Genes, p53 , Humans , Nasopharyngeal Carcinoma/drug therapy , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Neoplasms/drug therapy , Nasopharyngeal Neoplasms/genetics
5.
Sci Rep ; 4: 4473, 2014 Mar 26.
Article in English | MEDLINE | ID: mdl-24667280

ABSTRACT

Quantum phase transition is one of the most interesting aspects in quantum many-body systems. Recently, geometric quantum discord has been introduced to signature the critical behavior of various quantum systems. However, it is well-known that topological quantum phase transition can not be described by the conventional Landau's symmetry breaking theory, and thus it is unknown that whether previous study can be applicable in this case. Here, we study the topological quantum phase transition in Kitaev's 1D p-wave spinless quantum wire model in terms of its ground state geometric quantum discord. The derivative of geometric quantum discord is nonanalytic at the critical point, in both zero temperature and finite temperature cases. The scaling behavior and the universality are verified numerically. Therefore, our results clearly show that all the key ingredients of the topological phase transition can be captured by the nearest neighbor and long-range geometric quantum discord.

6.
Opt Express ; 14(8): 3594-601, 2006 Apr 17.
Article in English | MEDLINE | ID: mdl-19516506

ABSTRACT

The characteristics of two coupled Bose-Einstein Condensate (BEC) bright solitons trapped in an optical lattice are investigated with the variational approach and direct numerical simulations of the Gross-Pitaevskii equation. It is found that the optical lattice can be controllably used to capture and drag the coupled BEC solitons. Its effect depends on the initial location of the BEC solitons, the lattice amplitude and wave-number, and the amplitude of the coupled BEC solitons. The effective interaction between the two coupled solitons is the attractive effect.

7.
Opt Express ; 13(25): 10382-91, 2005 Dec 12.
Article in English | MEDLINE | ID: mdl-19503253

ABSTRACT

By use of the Kubelka-Munk theory, the Mie theory and the independent scattering approximation, we obtain the explicit expression of the emittance of an infrared coating attached to a radar absorber with a high emittance, in the 3~5microm window. Taking aluminum particles with spherical shape as the pigments within the coating, we give the dependence of the coating emittance with respect to the particle radius, the thickness of the coating. At a volume fraction of 0.05, we propose the optimum particle radius range of the pigment particles is around 0.35~0.6microm. When the thickness of the coating exceeds 300microm, the decrease of emittance at 4microm wavelength becomes negligible. Too much thickness of IR layer wouldn't contribute to the decrease of emittance. We study the influence of the infrared coating on the performance of the radar absorber, and believe that not too much thick infrared coating consisting of spherical Al particles wouldn't result in a remarkable deterioration of the absorbing ability of the radar absorber.

SELECTION OF CITATIONS
SEARCH DETAIL
...