Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 146
Filter
1.
Cell Death Differ ; 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879724

ABSTRACT

Development of the cerebellum requires precise regulation of granule neuron progenitor (GNP) proliferation. Although it is known that primary cilia are necessary to support GNP proliferation, the exact molecular mechanism governing primary cilia dynamics within GNPs remains elusive. Here, we establish the pivotal roles for the centrosomal kinase TTBK2 (Tau tubulin kinase-2) and the E3 ubiquitin ligase HUWE1 in GNP proliferation. We show that TTBK2 is highly expressed in proliferating GNPs under Sonic Hedgehog (SHH) signaling, coinciding with active GNP proliferation and the presence of primary cilia. TTBK2 stabilizes primary cilia by inhibiting their disassembly, thereby promoting GNP proliferation in response to SHH. Mechanistically, we identify HUWE1 as a novel centrosomal E3 ligase that facilitates primary cilia disassembly by targeting TTBK2 degradation. Disassembly of primary cilia serves as a trigger for GNP differentiation, allowing their migration from the external granule layer (EGL) of the cerebellum to the internal granule layer (IGL) for subsequent maturation. Moreover, we have established a link between TTBK2 and SHH-type medulloblastoma (SHH-MB), a tumor characterized by uncontrolled GNP proliferation. TTBK2 depletion inhibits SHH-MB proliferation, indicating that TTBK2 may be a potential therapeutic target for this cancer type. In summary, our findings reveal the mechanism governing cerebellar development and highlight a potential anti-cancer strategy for SHH-MB.

2.
Article in English | MEDLINE | ID: mdl-38857204

ABSTRACT

ABSTRACT: Diabetic retinopathy (DR) is a secondary complication of diabetes that can lead to visual impairment and blindness. The retinal pigment epithelium (RPE) is a monolayer of pigment cells that forms the blood-retinal barrier (BRB) via tight junction (TJ) proteins and plays a crucial role in the physiological function of the retina. Hyperglycemia induces RPE death and BRB breakdown, which accelerates the process of DR. Curcumin, an active extract of Curcuma longa, has anti-inflammatory, antioxidant, antiapoptotic, and neuroprotective properties. However, the effect of Curcumin on the BRB under high glucose conditions remains unknown. This study aimed to investigate the protective effects of Curcumin on RPE physiology in vitro and in vivo. Curcumin significantly alleviated cell viability inhibition under high glucose conditions. Moreover, high glucose reduced extracellular signal-regulated kinase and Akt pathways activation to diminish RPE cell growth but reversed by Curcumin treatment. Curcumin protected not only TJ integrity but also retinoid regeneration through TJ proteins and isomerase modulation in diabetic retina. Furthermore, Curcumin decreased the expression of angiogenic factor to inhibit retinal neovascularization. Finally, Curcumin treatment markedly reduced apoptosis during hyperglycemia. In conclusion, Curcumin can alleviate the progression of DR by promoting RPE survival, TJ integrity, retinoid isomerase activity, RPE senescence inhibition, and neovascularization. Therefore, Curcumin exhibits high potential for use as a therapeutic agent for early DR.

3.
Biomedicines ; 12(5)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38790941

ABSTRACT

Gliomas are the most common primary brain tumors in adults. Despite multidisciplinary treatment approaches, the survival rates for patients with malignant glioma have only improved marginally, and few prognostic biomarkers have been identified. Peroxisome proliferator-activated receptor γ (PPARγ) coactivator-1α (PGC-1α) is a crucial regulator of cancer metabolism, playing a vital role in cancer cell adaptation to fluctuating energy demands. In this study, the clinicopathological roles of PGC-1α in gliomas were evaluated. Employing immunohistochemistry, cell culture, siRNA transfection, cell viability assays, western blot analyses, and in vitro and in vivo invasion and migration assays, we explored the functions of PGC-1α in glioma progression. High PGC-1α expression was significantly associated with an advanced pathological stage in patients with glioma and with poorer overall survival. The downregulation of PGC-1α inhibited glioma cell proliferation, invasion, and migration and altered the expression of oncogenic markers. These results conclusively demonstrated that PGC-1α plays a critical role in maintaining the malignant phenotype of glioma cells and indicated that targeting PGC-1α could be an effective strategy to curb glioma progression and improve patient survival outcomes.

4.
J Am Heart Assoc ; 13(9): e033236, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38686902

ABSTRACT

BACKGROUND: Both high and low levels of serum potassium measurements are linked with a higher risk of adverse clinical events among patients with type 2 diabetes. The study was aimed at evaluating the implications of the various degrees of initial estimated glomerular filtration rate (eGFR) change on subsequent serum potassium homeostasis following sodium-glucose cotransporter-2 inhibitor (SGLT2i) initiation among patients with type 2 diabetes. METHODS AND RESULTS: We used medical data from a multicenter health care provider in Taiwan and recruited 5529 patients with type 2 diabetes with baseline/follow-up eGFR data available after 4 to 12 weeks of SGLT2i treatment from June 1, 2016, to December 31, 2018. SGLT2i treatment was associated with an initial mean (SEM) eGFR decline of -3.5 (0.2) mL/min per 1.73 m2 in overall study participants. A total of 36.7% (n=2028) of patients experienced no eGFR decline, and 57.9% (n=3201) and 5.4% (n=300) of patients experienced an eGFR decline of 0% to 30% and >30%, respectively. Patients with an initial eGFR decline of >30% were associated with higher variability in consequent serum potassium measurement when compared with those without an initial eGFR decline. Participants with a pronounced eGFR decline of >30% were associated with a higher risk of hyperkalemia ≥5.5 (adjusted hazard ratio,4.59 [95% CI, 2.28-9.26]) or use of potassium binder (adjusted hazard ratio, 2.65 [95% CI, 1.78-3.95]) as well as hypokalemia events <3.0 mmol/L (adjusted hazard ratio, 3.21 [95% CI, 1.90-5.42]) or use of potassium supplement (adjusted hazard ratio, 1.87 [95% CI, 1.37-2.56]) following SGLT2i treatment after multivariate adjustment. CONCLUSIONS: Physicians should be aware that the eGFR trough occurs shortly, and consequent serum potassium changes following SGLT2i initiation.


Subject(s)
Diabetes Mellitus, Type 2 , Glomerular Filtration Rate , Potassium , Sodium-Glucose Transporter 2 Inhibitors , Humans , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/adverse effects , Glomerular Filtration Rate/drug effects , Male , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/diagnosis , Female , Middle Aged , Potassium/blood , Taiwan/epidemiology , Aged , Risk Factors , Biomarkers/blood , Risk Assessment , Hyperkalemia/chemically induced , Hyperkalemia/blood , Hyperkalemia/epidemiology , Kidney/physiopathology , Kidney/drug effects , Retrospective Studies , Hypokalemia/chemically induced , Hypokalemia/blood , Hypokalemia/epidemiology , Time Factors , Treatment Outcome , Diabetic Nephropathies/blood , Diabetic Nephropathies/diagnosis
5.
Biomed Pharmacother ; 174: 116538, 2024 May.
Article in English | MEDLINE | ID: mdl-38579401

ABSTRACT

Glaucoma is considered a neurodegenerative disease characterized by progressive visual field defects that may lead to blindness. Although controlling intraocular pressure (IOP) is the mainstay of glaucoma treatment, some glaucoma patients have unmet needs due to unclear pathogenic mechanisms. Recently, there has been growing evidence that neuroinflammation is a potential target for the development of novel antiglaucoma agents. In this study, we investigated the protective effects and cellular mechanisms of H7E, a novel small molecule inhibits HDAC8, using in vitro and in vivo glaucoma-like models. Importantly, H7E mitigated extracellular MMP-9 activity and MCP-1 levels in glutamate- or S100B-stimulated reactive Müller glia. In addition, H7E inhibited the upregulation of inflammation- and proliferation-related signaling pathways, particularly the ERK and JNK MAPK pathways. Under conditions of oxidative damage, H7E prevents retinal cell death and reduces extracellular glutamate released from stressed Müller glia. In a mouse model of NMDA-induced retinal degeneration, H7E alleviated functional and structural defects within the inner retina as assessed by electroretinography and optical coherence tomography. Our results demonstrated that the newly identified compound H7E protects against glaucoma damage by specifically targeting HDAC8 activity in the retina. This protective effect is attributed to the inhibition of Müller glial activation and the prevention of retinal cell death caused by oxidative stress.


Subject(s)
Ependymoglial Cells , Glaucoma , Histone Deacetylase Inhibitors , Histone Deacetylases , Mice, Inbred C57BL , Oxidative Stress , Animals , Oxidative Stress/drug effects , Glaucoma/drug therapy , Glaucoma/metabolism , Glaucoma/pathology , Histone Deacetylase Inhibitors/pharmacology , Ependymoglial Cells/drug effects , Ependymoglial Cells/metabolism , Ependymoglial Cells/pathology , Mice , Histone Deacetylases/metabolism , Retina/drug effects , Retina/metabolism , Retina/pathology , Disease Models, Animal , Neuroprotective Agents/pharmacology , Male , Retinal Degeneration/drug therapy , Retinal Degeneration/pathology , Retinal Degeneration/metabolism , Retinal Degeneration/prevention & control
6.
Front Cardiovasc Med ; 11: 1301140, 2024.
Article in English | MEDLINE | ID: mdl-38510200

ABSTRACT

Background: Previous studies have shown that global constructive work (CW) and wasted work (WW) predict response to cardiac resynchronization therapy (CRT). This study evaluated the predictive value of regional CW and WW for reverse remodeling and clinical outcomes after CRT. Methods: We performed a prospective study involving 134 CRT candidates with left bundle branch block and left ventricular ejection fraction ≤35%. Global and regional CW and WW were calculated using pressure-strain loop analysis. CRT response was defined by reverse remodeling as a reduction of ≥15% in left ventricular end-systolic volume after six months. Results: At six-month follow-up, 92 (69%) patients responded to CRT. Of the regional CW and WW measures, lateral wall (LW) CW and septal WW were most strongly and significantly correlated with reverse remodeling. At multivariate analysis, LW CW and septal WW were both independent determinants of reverse remodeling. When LW CW and septal WW were included in the model, global CW and WW were not independently associated with reverse remodeling. LW CW and septal WW predicted reverse remodeling with an area under the curve (AUC) of 0.783 (95% CI: 0.700-0.866) and 0.737 (95% CI: 0.644-0.831), respectively. Using both variables increased the AUC to 0.832 (95% CI: 0.755-0.908). Both LW CW ≤878 mmHg% (HR 2.01; 95% CI: 1.07-3.79) and septal WW ≤181 mmHg% (HR 2.60; 95% CI: 1.38-4.90) were significant predictors of combined death and HF hospitalization at two-year follow-up. Conclusion: LW CW and septal WW before CRT are important determinants of reverse remodeling and clinical outcomes.

7.
Wound Repair Regen ; 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38415502

ABSTRACT

Self-improving dystrophic epidermolysis bullosa (DEB) is a genodermatosis that is inherited autosomal dominantly or recessively, and its clinical symptoms may improve or subside spontaneously. Herein, we report a case of self-improving DEB with COL7A1 p.Gly2025Asp variant. The diagnosis was made through histopathological, electron microscopic examination, and genetic testing. The same variant is also noted on his father, who presents with dystrophic toenails without any blisters. This study highlights that idiopathic nail dystrophy could be linked to congenital or hereditary disease. Furthermore, we conducted a review of the literature on the characteristics of reported cases of self-improving DEB with a personal or family history of nail dystrophy. The results supported our findings that nail dystrophy may be the sole manifestation in some family members. We suggest that individuals suffering from idiopathic nail dystrophy may seek genetic counselling when planning pregnancy to early evaluate the potential risk of hereditary diseases.

9.
J Formos Med Assoc ; 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38296698

ABSTRACT

Blood-based biomarkers (BBM) are potentially powerful tools that assist in the biological diagnosis of Alzheimer's disease (AD) in vivo with minimal invasiveness, relatively low cost, and good accessibility. This review summarizes current evidence for using BBMs in AD, focusing on amyloid, tau, and biomarkers for neurodegeneration. Blood-based phosphorylated tau and the Aß42/Aß40 ratio showed consistent concordance with brain pathology measured by CSF or PET in the research setting. In addition, glial fibrillary acidic protein (GFAP) and neurofilament light chain (NfL) are neurodegenerative biomarkers that show the potential to assist in the differential diagnosis of AD. Other pathology-specific biomarkers, such as α-synuclein and TAR DNA-binding protein 43 (TDP-43), can potentially detect AD concurrent pathology. Based on current evidence, the working group from the Taiwan Dementia Society (TDS) achieved consensus recommendations on the appropriate use of BBMs for AD in clinical practice. BBMs may assist clinical diagnosis and prognosis in AD subjects with cognitive symptoms; however, the results should be interpreted by dementia specialists and combining biochemical, neuropsychological, and neuroimaging information. Further studies are needed to evaluate BBMs' real-world performance and potential impact on clinical decision-making.

11.
Int J Stroke ; 19(1): 105-113, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37485895

ABSTRACT

BACKGROUND AND AIM: Previous studies have suggested cardiovascular risk factors increase the risk of not only common sporadic stroke but also of stroke in patients with monogenic stroke disorders including CADASIL. We investigated the effects of the NOTCH3 Arg544Cys (R544C) variant and associated vascular risk factors on stroke in the Taiwanese population. METHODS: This study was conducted using data from the Taiwan Biobank, consisting of at least 130,000 Han Chinese participants. The genotype was derived from customized genome-wide arrays for 650,000 to 750,000 single-nucleotide polymorphisms (SNPs). Individuals with NOTCH3 R544C were subsequently matched with noncarriers based on the propensity score at a 1:10 ratio by demographic and cardiovascular risk factors. The odds ratio (OR) for stroke or other phenotypes in NOTCH3 R544C carriers and matched noncarriers was then calculated. Univariate and multivariate regression analyses were performed on cardiovascular risk factors in NOTCH3 R544C carriers with and without stroke. The polygenic risk score (PRS) model, adopted from the UK Biobank, was then applied to evaluate the role of NOTCH3 R544C in stroke. RESULTS: From the 114,282 participants with both genotype and questionnaire results, 1080 (0.95%) harbored the pathogenic NOTCH3 R544C variant. When compared to the matched controls (n = 10,800), the carriers presented with a history of stroke (OR: 2.52, 95% confidence interval (CI) (1.45, 4.37)), dementia (OR: 30.1, 95% CI (3.13, 289.43)), and sibling history of stroke (OR: 2.48, 95% CI (1.85, 3.34)) phenotypes. The risk of stroke increased with every 10-year increase in age (p = 0.006, Cochran-Mantel-Haenszel test). Among NOTCH3 R544C carriers, 16 (1.3%) of the 1080 carriers with a stroke history were older, male, and more likely to have hypertension, diabetes, dyslipidemia, and a family history of stroke. In the stepwise multivariate analysis, hypertension (OR: 11.28, 95% CI (3.54, 43.3)) and diabetes mellitus (OR: 4.10, 95% CI (1.31, 12.4)) were independently associated with stroke. Harboring the NOTCH3 R544C variant in the Taiwan Biobank is comparable with a 6.74 standard deviations increase in individual's polygenic risk score for stroke. CONCLUSION: While the NOTCH3 R544C variant alone increased the risk of stroke, modifiable vascular risk factors also played a role in the occurrence of stroke in Taiwanese community-dwelling individuals carrying the NOTCH3 variant.


Subject(s)
CADASIL , Hypertension , Stroke , Humans , Male , Stroke/epidemiology , Stroke/genetics , Stroke/pathology , Taiwan/epidemiology , Receptors, Notch/genetics , Biological Specimen Banks , Mutation , Risk Factors , Hypertension/complications , Magnetic Resonance Imaging , Receptor, Notch3/genetics
12.
J Am Heart Assoc ; : e032689, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37982214

ABSTRACT

BACKGROUND: Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is the most prevalent monogenic cerebral small-vessel disease. Phenotype variability in CADASIL suggests the possible role of genetic modifiers. We aimed to investigate the contributions of the APOE genotype and Neurogenic locus notch homolog protein 3 (NOTCH3) variant position to cognitive impairment associated with CADASIL. METHODS AND RESULTS: Patients with the cysteine-altering NOTCH3 variant were enrolled in a cross-sectional study, including the Mini-Mental State Examination (MMSE), brain magnetic resonance imaging, and APOE genotyping. Cognitive impairment was defined as an MMSE score <24. The associations between the MMSE score and genetic factors were assessed using linear regression models. Bayesian adjustment for confounding was used to identify clinical confounders. A total of 246 individuals were enrolled, among whom 210 (85%) harbored the p.R544C variant, 96 (39%) had cognitive impairment, and 150 (61%) had a history of stroke. The APOE ɛ2 allele was associated with a lower MMSE score (adjusted B, -4.090 [95% CI, -6.708 to -1.473]; P=0.023), whereas the NOTCH3 p.R544C variant was associated with a higher MMSE score (adjusted B, 2.854 [95% CI, 0.603-5.105]; P=0.0132) after adjustment for age, education, and history of ischemic stroke. Mediation analysis suggests that the associations between the APOE ɛ2 allele and MMSE score and between the NOTCH3 p.R544C variant and MMSE score are mediated by mesial temporal atrophy and white matter hyperintensity, respectively. CONCLUSIONS: APOE genotype may modify cognitive impairment in CADASIL, whereby individuals carrying the APOE ɛ2 allele may present a more severe cognitive impairment.

14.
Cells ; 12(19)2023 10 09.
Article in English | MEDLINE | ID: mdl-37830634

ABSTRACT

Glioblastoma (GBM) stands as the most prevalent primary malignant brain tumor, typically resulting in a median survival period of approximately thirteen to fifteen months after undergoing surgery, chemotherapy, and radiotherapy. Nucleobindin-2 (NUCB2) is a protein involved in appetite regulation and energy homeostasis. In this study, we assessed the impact of NUCB2 expression on tumor progression and prognosis of GBM. We further evaluated the relationship between NUCB2 expression and the sensitivity to chemotherapy and radiotherapy in GBM cells. Additionally, we compared the survival of mice intracranially implanted with GBM cells. High NUCB2 expression was associated with poor prognosis in patients with GBM. Knockdown of NUCB2 reduced cell viability, migration ability, and invasion ability of GBM cells. Overexpression of NUCB2 resulted in reduced apoptosis following temozolomide treatment and increased levels of DNA damage repair proteins after radiotherapy. Furthermore, mice intracranially implanted with NUCB2 knockdown GBM cells exhibited longer survival compared to the control group. NUCB2 may serve as a prognostic biomarker for poor outcomes in patients with GBM. Additionally, NUCB2 not only contributes to tumor progression but also influences the sensitivity of GBM cells to chemotherapy and radiotherapy. Therefore, targeting NUCB2 protein expression may represent a novel therapeutic approach for the treatment of GBM.


Subject(s)
Glioblastoma , Humans , Animals , Mice , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/metabolism , Nucleobindins/therapeutic use , Cell Line, Tumor , Temozolomide/pharmacology , Temozolomide/therapeutic use
15.
Int J Mol Sci ; 24(17)2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37686174

ABSTRACT

Glioblastoma (GBM) is the most common primary brain malignancy in adults. Despite multimodal treatment that involves maximal safe resection, concurrent chemoradiotherapy, and tumour treatment for supratentorial lesions, the prognosis remains poor. The current median overall survival is only <2 years, and the 5-year survival is only 7.2%. Thioredoxin domain-containing protein 11 (TXNDC11), also known as EF-hand binding protein 1, was reported as an endoplasmic reticulum stress-induced protein. The present study aimed to elucidate the prognostic role of TXNDC11 in GBM. We evaluated the clinical parameters and TXNDC11 scores in gliomas from hospitals. Additionally, proliferation, invasion, migration assays, apoptosis, and temozolomide (TMZ)-sensitivity assays of GBM cells were conducted to evaluate the effects of short interfering RNA (siRNA) on these processes. In addition, these cells were subjected to Western blotting to detect the expression levels of N-cadherin, E-cadherin, and Cyclin D1. High levels of TXNDC11 protein expression were significantly associated with World Health Organization (WHO) high-grade tumour classification and poor prognosis. Multivariate analysis revealed that in addition to the WHO grade, TXNDC11 protein expression was also an independent prognostic factor of glioma. In addition, TXNDC11 silencing inhibited proliferation, migration, and invasion and led to apoptosis of GBM cells. However, over-expression of TXNDC11 enhanced proliferation, migration, and invasion. Further, TXNDC11 knockdown downregulated N-cadherin and cyclin D1 expression and upregulated E-cadherin expression in GBM cells. Knock-in TXNDC11 return these. Finally, in vivo, orthotopic xenotransplantation of TXNDC11-silenced GBM cells into nude rats promoted slower tumour growth and prolonged survival time. TXNDC11 is a potential oncogene in GBMs and may be an emerging therapeutic target.


Subject(s)
Glioblastoma , Glioma , Animals , Rats , Cadherins , Cyclin D1 , Glioma/genetics , Thioredoxins/genetics , Humans
16.
Int J Mol Sci ; 24(16)2023 Aug 13.
Article in English | MEDLINE | ID: mdl-37628921

ABSTRACT

KCNH2 loss-of-function mutations cause long QT syndrome type 2 (LQT2), an inherited cardiac disorder associated with life-threatening ventricular arrhythmia. Through whole-exome sequencing, we discovered a novel AGCGACAC deletion (S981fs) in the hERG gene of an LQT2 patient. Using a heterologous expression system and patch clamping, we found that the mutant K channel had reduced cell surface expression and lower current amplitude compared to the wild type. However, functional expression was restored by lowering temperature and using potassium channel inhibitors or openers (E4031, cisapride, nicorandil). Co-immunoprecipitation experiments confirmed the assembly of mutant proteins with wild-type hERG. Confocal imaging showed decreased hERG distribution on the cell membrane in cells expressing S981fs. Notably, treatment with G418 significantly increased hERG current in wild-type/S981fs heterozygotes. In conclusion, our study identifies a novel hERG mutation leading to impaired Kv11.1 function due to trafficking and nonsense-mediated RNA decay defects. These findings shed light on the mechanisms underlying LQT2 and offer potential therapeutic avenues.


Subject(s)
Long QT Syndrome , Humans , Exome Sequencing , Long QT Syndrome/genetics , Heart , Cell Membrane , Mutation , ERG1 Potassium Channel/genetics
17.
Neurology ; 101(17): e1665-e1677, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37652700

ABSTRACT

BACKGROUND AND OBJECTIVES: Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is the most frequent genetic cerebrovascular disease. The clinical aspects of the disease in relation to the various types of lesions on MRI vary widely not only within families but also between different cohorts reported worldwide. Many limitations prevent comparison of imaging data obtained with different scanners and sequences in different patient cohorts. We aimed to develop and validate a simple tool to inventory quickly the key MRI features in CADASIL to compare imaging data across different populations. METHODS: The Inventory Tool (CADA-MRIT) was designed by consensus after repeated expert meetings. It consists of 11 imaging items to assess periventricular, deep, and superficial white matter hyperintensity (WMH), lacunes, cerebral microbleeds (CMB), centrum semiovale and basal ganglia dilated perivascular spaces (dPVS), superficial and deep atrophy, large infarcts, and macrobleeds. The reliability, clinical relevance, and time-effectiveness of CADA-MRIT were assessed using data from 3 independent patient cohorts. RESULTS: Imaging data from 671 patients with CADASIL (440 from France, 119 from Germany, and 112 from Taiwan) were analyzed. Their mean age was 53.4 ± 12.2 years, 54.5% were women, 56.2% had stroke, and 31.1% had migraine with aura. Any lacune was present in at least 70% of individuals, whereas CMB occurred in 83% of patients from the Asian cohort and in only 35% of European patients. CADA-MRIT scores obtained for WMH, CMB, and dPVS were comparable regardless of the scanner or sequence used (weighted κ > 0.60). Intrarater and interrater agreements were from good to very good (weighted κ > 0.60). Global WMH and atrophy scores correlated strongly with accurate volumetric quantification of WMH or brain parenchymal fraction (Pearson r > 0.60). Different imaging scores were significantly associated with the main clinical manifestations of the disease. The time for evaluating 1 patient was approximately 2-3 minutes. DISCUSSION: The CADA-MRIT is an easy-to-use tool for analyzing and comparing the most frequent MRI lesions of CADASIL across different populations. This instrument is reliable. It can be used with different imaging sequences or scanners. It also provides clinically relevant scores in a very short time for completion.


Subject(s)
CADASIL , Humans , Female , Adult , Middle Aged , Aged , Male , CADASIL/complications , Reproducibility of Results , Brain/diagnostic imaging , Brain/pathology , Magnetic Resonance Imaging/methods , Atrophy/pathology
18.
Cancer Sci ; 114(10): 4063-4072, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37489252

ABSTRACT

The study used clinical data to develop a prediction model for breast cancer survival. Breast cancer prognostic factors were explored using machine learning techniques. We conducted a retrospective study using data from the Taipei Medical University Clinical Research Database, which contains electronic medical records from three affiliated hospitals in Taiwan. The study included female patients aged over 20 years who were diagnosed with primary breast cancer and had medical records in hospitals between January 1, 2009 and December 31, 2020. The data were divided into training and external testing datasets. Nine different machine learning algorithms were applied to develop the models. The performances of the algorithms were measured using the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and F1-score. A total of 3914 patients were included in the study. The highest AUC of 0.95 was observed with the artificial neural network model (accuracy, 0.90; sensitivity, 0.71; specificity, 0.73; PPV, 0.28; NPV, 0.94; and F1-score, 0.37). Other models showed relatively high AUC, ranging from 0.75 to 0.83. According to the optimal model results, cancer stage, tumor size, diagnosis age, surgery, and body mass index were the most critical factors for predicting breast cancer survival. The study successfully established accurate 5-year survival predictive models for breast cancer. Furthermore, the study found key factors that could affect breast cancer survival in Taiwanese women. Its results might be used as a reference for the clinical practice of breast cancer treatment.


Subject(s)
Breast Neoplasms , Humans , Female , Adult , Retrospective Studies , Machine Learning , Predictive Value of Tests , ROC Curve
19.
Biochem Pharmacol ; 215: 115700, 2023 09.
Article in English | MEDLINE | ID: mdl-37482199

ABSTRACT

Diabetic retinopathy (DR) is a severe consequence of long-term diabetes mellitus and may lead to vision loss. Retinal pigment epithelial (RPE) cells are a diverse group of retinal cells with varied metabolic and functional roles. In hypoxic conditions, RPE cells have been shown to produce angiogenic factors, such as vascular endothelial growth factor (VEGF), which is regulated by hypoxia-inducible factor 1-alpha (HIF1A). VEGF plays a crucial role in angiogenesis in DR. In the present study, we investigated whether azatyrosine-phenylbutyric hydroxamide (AZP) has therapeutic effect on DR therapy. In this study, we treated high glucose-activated human retinal pigment epithelial cells (ARPE-19) with and without AZP. The effector proteins were evaluated using western blotting. In the in vivo study, AZP was administered to the db/db mice as a DR animal model. Moreover, invasive imaging techniques such as optical coherence tomography (OCT), fundus photography, and fundus fluorescein angiography (FFA) were performed on the mice to assess DR progression. We found that treatment of AZP for 12 weeks reversed increasing DR retinal alterations in db/db mice, decreasing vascular density, retinal blood perfusion, retinal thickness, decreasing DR lesion, lipofuscin accumulation, HIF1A, VEGF, and inflammation factor expression. In addition, AZP treatment could activate the aryl hydrocarbon receptor AHR and reverse the high-glucose-induced HIF1A and VEGF in ARPE-19 cells and db/db mice. In conclusion, AZP activated AHR while inhibiting HIF1A and VEGF. This study indicates that AZP may be a promising therapeutic agent for treating DR.


Subject(s)
Diabetes Mellitus , Diabetic Retinopathy , Mice , Humans , Animals , Diabetic Retinopathy/drug therapy , Diabetic Retinopathy/pathology , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Receptors, Aryl Hydrocarbon/genetics , Glucose , Retinal Pigments/therapeutic use
20.
Fluids Barriers CNS ; 20(1): 31, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37095509

ABSTRACT

Blue light is part of the natural light spectrum that emits high energy. Currently, people are frequently exposed to blue light from 3C devices, resulting in a growing incidence of retinopathy. The retinal vasculature is complex, and retinal vessels not only serve the metabolic needs of the retinal sublayers, but also maintain electrolyte homeostasis by forming the inner blood-retinal barrier (iBRB). The iBRB, which is primarily composed of endothelial cells, has well-developed tight junctions. However, with exposure to blue light, the risks of targeting retinal endothelial cells are currently unknown. We found that endothelial claudin-5 (CLDN5) was rapidly degraded under blue light, coinciding with the activation of a disintegrin and metalloprotease 17 (ADAM17), even at non-cytotoxic lighting. An apparently broken tight junction and a permeable paracellular cleft were observed. Mice exposed to blue light displayed iBRB leakage, conferring attenuation of the electroretinogram b-wave and oscillatory potentials. Both pharmacological and genetic inhibition of ADAM17 remarkably alleviated CLDN5 degradation induced by blue light. Under untreated condition, ADAM17 is sequestered by GNAZ (a circadian-responsive, retina-enriched inhibitory G protein), whereas ADAM17 escapes from GNAZ by blue light illuminance. GNAZ knockdown led to ADAM17 hyperactivation, CLDN5 downregulation, and paracellular permeability in vitro, and retinal damage mimicked blue light exposure in vivo. These data demonstrate that blue light exposure might impair the iBRB by accelerating CLDN5 degradation through the disturbance of the GNAZ-ADAM17 axis.


Subject(s)
Blood-Retinal Barrier , Endothelial Cells , Mice , Animals , Blood-Retinal Barrier/metabolism , Claudin-5/metabolism , Endothelial Cells/metabolism , Retina/metabolism , Tight Junctions/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...