Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 9(4): e93370, 2014.
Article in English | MEDLINE | ID: mdl-24695412

ABSTRACT

BACKGROUND: Previous research has shown that oral processing characteristics like bite size and oral residence duration are related to the satiating efficiency of foods. Oral processing characteristics are influenced by food texture. Very little research has been done on the effect of food texture within solid foods on energy intake. OBJECTIVES: The first objective was to investigate the effect of hardness of food on energy intake at lunch, and to link this effect to differences in food oral processing characteristics. The second objective was to investigate whether the reduction in energy intake at lunch will be compensated for in the subsequent dinner. DESIGN: Fifty subjects (11 male, BMI: 21±2 kg/m2, age: 24±2 y) participated in a cross-over study in which they consumed ad libitum from a lunch with soft foods or hard foods on two separate days. Oral processing characteristics at lunch were assessed by coding video records. Later on the same days, subjects consumed dinner ad libitum. RESULTS: Hard foods led to a ∼13% lower energy intake at lunch compared to soft foods (P<0.001). Hard foods were consumed with smaller bites, longer oral duration per gram food, and more chewing per gram food compared to the soft foods (P<0.05). Energy intake at dinner did not differ after both lunches (P = 0.16). CONCLUSIONS: Hard foods led to reduced energy intake compared to soft foods, and this reduction in energy intake was sustained over the next meal. We argue that the differences in oral processing characteristics produced by the hardness of the foods explain the effect on intake. The sustained reduction in energy intake suggests that changes in food texture can be a helpful tool in reducing the overall daily energy intake.


Subject(s)
Energy Intake/physiology , Hardness/physiology , Mastication/physiology , Adult , Body Mass Index , Cross-Over Studies , Eating/physiology , Feeding Behavior/physiology , Female , Food , Food Preferences/physiology , Humans , Lunch/physiology , Male , Meals/physiology , Satiation/physiology , Young Adult
2.
J Hered ; 101(5): 639-43, 2010.
Article in English | MEDLINE | ID: mdl-20497969

ABSTRACT

Y chromosome acts as a single nonrecombining unit that is male specific and in effect haploid, thus ensuring the preservation of mutational events as a single haplotype via male lines. In this study, 6 Y chromosome-specific microsatellites (SSR) were tested for the patrilineal genetic variations of 573 male samples from Chinese domestic horse (30 breeds), Przewalski's horse, and donkey. All the 6 loci appeared as a haplotype block in Przewalski's horse and the domestic donkey. There were notable differences, however, at Y chromosome markers between horse and donkey. There were 2 haplotypes of Eca.YA16 in the domestic horse breeds, Haplotype A (Allele A: 156 bp) and Haplotype B (Allele B: 152 bp). Allele A was the common allele among 30 horse breeds, and Allele B was found in 11 horse breeds. This is the first description of a Y chromosome variant for horses. The 2 haplotypes of Y chromosome discovered in the domestic horse breeds in China could be helpful in unveiling their intricate genetic genealogy.


Subject(s)
Horses/genetics , Y Chromosome/genetics , Alleles , Animals , China , Equidae/genetics , Genetic Variation , Haplotypes , Male , Microsatellite Repeats , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...