Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 251: 126263, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37567540

ABSTRACT

Liver fibrosis is a wound-healing response due to persistent liver damage and it may progress to cirrhosis and even liver cancer if no intervention is given. In the current cognition, liver fibrosis is reversible. So, it is of great significance to explore the related gene targets or biomarker for anti-fibrosis of liver. Insulin like growth factor 1 (IGF1) and IGF1 receptor (IGF1R) are mainly expressed in the liver tissues and play critical roles in the liver function. The present review summarized the role of IGF1/IGF1R and its signaling system in liver fibrosis and illustrated the potential mechanisms including DNA damage repair, cell senescence, lipid metabolism and oxidative stress that may be involved in this process according to the studies on the fibrosis of liver or other organs. In particular, the roles of IGF1 and IGF1R in DNA damage repair were elaborated, including membrane-localized and nucleus-localized IGF1R. In addition, for each of the potential mechanism in anti-fibrosis of liver, the signaling pathways of the IGF1/IGF1R mediated and the cell species in liver acted by IGF1 and IGF1R under different conditions were included. The data in this review will support for the study about the effect of IGF1/IGF1R on liver fibrosis induced by various factors, meanwhile, provide a basis for the study of liver fibrosis to focus on the communications between the different kinds of liver cells.

2.
Food Chem ; 429: 136997, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37516051

ABSTRACT

We report the fabrication of a facile sensor using heme conjugated with gold nanoparticles (AuNPs) in situ on a glass carbon electrode (GCE) for the ultrasensitive determination of biotin without antibody or streptavidin. The use of heme and AuNPs as dual amplifiers allows a very broad detection range from 0.0050 to 50.0000 µmol·L-1 and a very low detection limit of 0.0016 µmol·L-1. The mechanistic aspects were elucidated using electrochemical analyses and frontier orbital calculations showing that the electrooxidation of biotin involves a one-electron and a one-proton transfer, generating biotin sulfoxide. The heme/AuNPs/GCE sensor exhibited excellent selectivity, reproducibility and stability, indicating high robustness. The recovery was between 97.20 and 105.70% with RSD less than 8.71%, suggesting good practicability. Our studies demonstrate that this approach can be used to detect and quantify biotin in a range of foods, including milk, infant formula, flour, orange juice, mango juice, egg white and egg yolk. Furthermore, all measurements do not require any intricate preparation or pre-treatment of the foods, thus representing a great potential for point-of-care testing.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Humans , Gold , Biotin , Heme , Reproducibility of Results , Carbon , Electrochemical Techniques , Electrodes , Limit of Detection
3.
Talanta ; 262: 124696, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37244246

ABSTRACT

C-reactive protein (CRP) is a protein biomarker for acute phase response. Herein, we fabricate a highly sensitive electrochemical immunosensor for CRP on a screen-printed carbon electrode (SPCE) with indole as a novel electrochemical probe and Au nanoparticles for signal amplification. Amongst, indole appeared as transparent nanofilms on the electrode surface, and underwent a one-electron and one-proton transfer to form oxindole during the oxidation process. Upon optimization of experimental conditions, a logarithmic correlation between CRP concentration (0.0001-100 µg∙mL-1) and response current was revealed with a detection limit of 0.03 ng∙mL-1 and a sensitivity of 5.7055 µA∙µg-1∙mL∙cm-2. The sensor exhibited exceptionally distinction selectivity, reproducibility and stability of the electrochemical immunosensor studied. The recovery rate of CRP in human serum samples determined by the standard addition method, ranged between 98.2-102.2%. Overall, the developed immunosensor is promising, and has the potential for CRP detection in real human serum samples.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Humans , C-Reactive Protein , Biosensing Techniques/methods , Immunoassay/methods , Gold , Reproducibility of Results , Indoles , Electrochemical Techniques/methods , Limit of Detection
4.
Int J Biol Macromol ; 238: 124125, 2023 May 31.
Article in English | MEDLINE | ID: mdl-36948334

ABSTRACT

Insulin-like growth factor (IGF)-1 is a polypeptide hormone with vital biological functions in bone cells. The abnormal expression of IGF-1 has a serious effect on bone growth, particularly bone remodeling. Evidence from animal models and human disease suggested that both IGF-1 deficiency and excess cause changes in bone remodeling equilibrium, resulting in profound alterations in bone mass and development. Here, we first introduced the functions and mechanisms of the members of IGFs in bone. Subsequently, the critical role of IGF-1 in the process of bone remodeling were emphasized from the aspects of bone resorption and bone formation respectively. This review explains the mechanism of IGF-1 in maintaining bone mass and bone homeostasis to a certain extent and provides a theoretical basis for further research.


Subject(s)
Bone Resorption , Insulin-Like Growth Factor I , Animals , Humans , Insulin-Like Growth Factor I/genetics , Insulin-Like Growth Factor I/metabolism , Insulin-Like Growth Factor II/metabolism , Bone and Bones/metabolism , Bone Density
5.
Gene ; 854: 147098, 2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36496177

ABSTRACT

OBJECTIVE: Miniature pigs are considered ideal organ donors for xenotransplantation in humans, but the mechanism underlying their dwarfism remains to be elucidated. IGF-1R is a crucial factor in body size formation in mammals, including skeletal muscle formation and development. The extracellular domain (ECD) binds to the ligand, a phenomenon that results in the activation of downstream pathways. METHODS: In this study, the coding sequences of two IGF-1R ECD haplotypes of the large Landrace (LP) pig and the small Bama Xiang (BM) pig were cloned into pcDNA3.1 vectors to generate pcDNA3.1-LP and pcDNA3.1-BM. The two recombinant vectors were then transfected into skeletal muscle cells. RESULTS: IGF-1R transcript was found to be expressed at higher levels in the pcDNA3.1-LP group than in the pcDNA3.1-BM group. The IGF-1R ECD from LP promoted cell proliferation and CyclinD1 expression, and promoted the phosphorylation of protein kinase B (to yield p-AKT). Moreover, the IGF-1R ECD from LP increased cell differentiation and the expression of myogenic determination factor (MyoD). CONCLUSION: Our data indicated that the IGF-1R ECD haplotypes between pig breeds with different body sizes affect IGF-1R expression, in turn affecting the proliferation and differentiation of skeletal muscle cells by activating downstream signalling pathways.


Subject(s)
Receptor, IGF Type 1 , Silent Mutation , Swine, Miniature , Animals , Humans , Cell Differentiation/genetics , Cell Proliferation , Insulin-Like Growth Factor I/metabolism , Muscle, Skeletal/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Receptor, IGF Type 1/chemistry , Receptor, IGF Type 1/genetics , Swine, Miniature/genetics , Swine, Miniature/metabolism
6.
Animals (Basel) ; 12(21)2022 Nov 07.
Article in English | MEDLINE | ID: mdl-36359184

ABSTRACT

Pig growth performance is one of the criteria for judging pork production and is influenced by genotype and external environmental factors such as feeding conditions. The growth performance of miniature pigs, such as Bama minipigs, differs considerably from that of the larger body size pigs, such as Landrace pigs, and can be regarded as good models in pig growth studies. In this research, we identified differentially expressed genes in the pituitary gland of Bama minipigs and Landrace pigs. Through the pathway enrichment analysis, we screened the growth-related pathways and the genes enriched in the pathways and established the protein-protein interaction network. The RNAHybrid algorithm was used to predict the interaction between differentially expressed microRNAs and differentially expressed mRNAs. Four regulatory pathways (Y-82-ULK1/CDKN1A, miR-4334-5p-STAT3/PIK3R1/RPS6KA3/CAB39L, miR-4331-SCR/BCL2L1, and miR-133a-3p-BCL2L1) were identified via quantitative real-time PCR to detect the expression and correlation of candidate miRNAs and mRNAs. In conclusion, we revealed potential miRNA-mRNA regulatory networks associated with pig growth performance in the pituitary glands of Bama minipigs and Landrace pigs, which may help to elucidate the underlying molecular mechanisms of growth differences in pigs of different body sizes.

7.
Nutrients ; 14(18)2022 Sep 10.
Article in English | MEDLINE | ID: mdl-36145113

ABSTRACT

Antler bone calcium (AB-Ca) and bioactive peptides (ABPs) were extracted from antler bones (Cervus elaphus) to maximize their value. In this study, 0.14 g calcium was obtained from 1 g antler bone. The peptide-calcium chelate rate was 53.68 ± 1.80%, and the Gly, Pro, and Glu in ABPs were identified to donate most to the increased calcium affinity through the mass spectrometry. Fourier transform infrared spectroscopy showed that calcium predominantly interacted with amino nitrogen atoms and carboxyl oxygen atoms, thereby generating a peptide-calcium chelate. The peptide-calcium chelates were characterized using scanning electron microscopy. A Caco-2 cell monolayer model showed that ABPs significantly increased calcium transport. Furthermore, the D-gal-induced aging mouse model indicated that the ABPs + AB-Ca group showed higher Ca and PINP levels, lower P, ALP, and CTX-1content in serum, and considerably higher tibia index and tibia calcium content. Results showed that ABPs + AB-Ca increased bone formation and inhibited bone resorption, thereby providing calcium supplements for ameliorating senile osteoporosis (SOP).


Subject(s)
Antlers , Deer , Aging , Animals , Antlers/chemistry , Caco-2 Cells , Calcium/analysis , Calcium, Dietary/analysis , Disease Models, Animal , Humans , Mice , Oxygen/analysis , Peptides/analysis , Peptides/pharmacology
8.
Antiviral Res ; 207: 105418, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36122620

ABSTRACT

REV-ERBα is a member of the nuclear receptor superfamily of transcription factors that aids in the regulation of many diseases. However, the prospect of using REV-ERBα for anti-influenza virus treatment remains poorly described, and there is an urgent need to develop effective anti-influenza agents due to the emergence of drug-resistant influenza viruses. In this study, eight SR9009 analogues were designed, synthesized, and evaluated for their biological activities against multiple influenza virus strains (H1N1, H3N2, adamantane- and oseltamivir-resistant H1N1 and influenza B virus), using ribavirin as the positive control. SR9009 and its analogues showed low micromolar or submicromolar EC50 values and exhibited modestly improved antiviral potency compared to that of ribavirin. In particular, compound 5a possessed the most potent inhibitory activity (EC50 = 0.471, 0.644, 1.644, 0.712 and 0.661 µM for A/PR/8/34, A/WSN/33, A/Wisconsin/67/2005, B/Yamagata/16/88 and Hebei/SWL1/2006, respectively). Cotransfection assays showed that all synthesized derivatives efficaciously suppressed transcription driven by the Bmal1 promoter. Mechanistic study results indicated that 5a efficiently inhibited IAV replication and interfered with the ealry stage of influenza virus life cycle. In addition, we found that 5a upregulated the key antiviral interferon-stimulated genes MxA, OAS2 and CH25H. Further in-depth transcriptome analysis revealed a series of upregulated genes that may contribute to the antiviral activities of 5a. These findings may provide an important direction for the development of new host-targeted broad-spectrum antiviral agents.


Subject(s)
Adamantane , Influenza A Virus, H1N1 Subtype , ARNTL Transcription Factors/pharmacology , Adamantane/pharmacology , Antiviral Agents/pharmacology , Influenza A Virus, H3N2 Subtype , Interferons/pharmacology , Oseltamivir/pharmacology , Pyrrolidines , Ribavirin/pharmacology , Thiophenes
9.
Int J Biol Macromol ; 208: 208-218, 2022 May 31.
Article in English | MEDLINE | ID: mdl-35306020

ABSTRACT

The growth hormone releasing hormone receptor (GHRHR) is well documented in organism growth and its alternative splicing may generate multiple functional GHRHR splice variants (SVs). Our previous study has demonstrated the key pituitary miRNAs (let-7e and miR-328-5p) in pig regulated the expression of GHRHR SVs by directly targeting to them. And according to recent reports, the interplay between miRNA-based silencing of mRNAs and alternative splicing of pre-mRNAs is a crucial post-transcriptional mechanism. In this study, SF3B3 and CPSF4 were firstly excavated as the splice factors that involved in the formation of GHRHR SVs mediated by let-7e and miR-328-5p through the comparation of the expression relations of GHRHR SVs, let-7e/miR-328-5p and SF3B3/CPSF4 in pituitary tissues between Landrace pigs and BaMa pigs, as well as the prediction of the target relations of let-7e/miR-328-5p with SF3B3 and/or CPSF4. SF3B3 and CPSF4 targeted by let-7e and miR-328-5p were further verified by performing dual-luciferase reporter assays and detecting the expression of target transcripts. Then the RT-PCR, RT-qPCR and Western blot assays were used to confirm SF3B3 and CPSF4 were involved in the formation of the GHRHR SVs, and in this process, let-7e and miR-328-5p mediated GHRHR SVs by regulating SF3B3 and CPSF4. Finally, the target site of SF3B3 on pre-GHRHR was on the Exon 12 to Exon14, while CPSF4 acted on the other fragments of the pre-GHRHR, which were explored by dual-luciferase reporter system preliminarily. To the best of our knowledge, this paper is the first to report the miRNAs regulate GHRHR SVs indirectly by splice factors.


Subject(s)
MicroRNAs , Alternative Splicing/genetics , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Mutation , RNA Precursors/metabolism , RNA, Messenger/metabolism , Swine/genetics
10.
Int J Mol Sci ; 23(3)2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35163336

ABSTRACT

(1) Background: As a novel type of non-coding RNA with a stable closed-loop structure, circular RNA (circRNA) can interact with microRNA (miRNA) and influence the expression of miRNA target genes. However, circRNA involved in pituitary growth hormone (GH) regulation is poorly understood. Our previous study revealed protein kinase C alpha (PRKCA) as the target gene of miR-709. Currently, the expression and function of rno_circRNA_0001004 in the rat pituitary gland is not clarified; (2) Methods: In this study, both bioinformatics analysis and dual-luciferase report assays showed a target relationship between rno_circRNA_0001004 and miR-709. Furthermore, the rno_circRNA_0001004 overexpression vector and si-circ_0001004 were constructed and transfected into GH3 cells; (3) Results: We found that rno_circRNA_0001004 expression was positively correlated with the PRKCA gene and GH expression levels, while it was negatively correlated with miR-709. In addition, overexpression of rno-circ_0001004 also promoted proliferation and relieved the inhibition of miR-709 in GH3 cells; (4) Conclusions: Our findings show that rno_circ_0001004 acts as a novel sponge for miR-709 to regulate GH synthesis and cell proliferation, and are the first case of discovery of the regulatory role of circRNA_0001004 in pituitary GH.


Subject(s)
Cell Proliferation , MicroRNAs , RNA, Circular , Animals , Cell Proliferation/genetics , Growth Hormone/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics , Rats
11.
Front Cell Dev Biol ; 9: 671170, 2021.
Article in English | MEDLINE | ID: mdl-34568312

ABSTRACT

MicroRNAs let-7c and let-7f, two members of the let-7 family, were involved in regulating osteoblast differentiation and have an important role in bone formation. Let-7e-5p, which also belonged to the let-7 family, presented in the differentiation of adipose-derived stem cells and mouse embryonic stem cells. However, the role of let-7e-5p in osteoblast differentiation was unclear. Thus, this study aimed to elucidate the function of let-7e-5p in osteoblast differentiation and its mechanism. Firstly, we found that the let-7e-5p mimic promoted osteoblast differentiation but not the proliferation of MC3T3-E1 cells by positively regulating the expression levels of osteogenic-associated genes (RUNX2, OCN, OPN, and OSX), the activity of ALP, and formation of mineralized nodules. Moreover, we ascertained that the let-7e-5p mimic downregulated the post-transcriptional expression of SOCS1 by specifically binding to the 3' untranslated region of SOCS1 mRNA. Also, let-7e-5p-induced SOCS1 downregulation increased the protein levels of p-STAT5 and IGF-1, which were both modulated by SOCS1 molecules. Furthermore, let-7e-5p abrogated the inhibition of osteogenic differentiation mediated by SOCS1 overexpression. Therefore, these results suggested that let-7e-5p regulated the differentiation of MC3T3-E1 cells through the JAK2/STAT5 pathway to upregulate IGF-1 gene expression by inhibiting SOCS1. These findings may provide a new insight into the regulatory role of let-7e-5p in osteogenic differentiation and imply the existence of a novel mechanism underlying let-7e-5p-mediated osteogenic differentiation.

12.
Adv Mater ; 33(35): e2102392, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34302399

ABSTRACT

Polymer dielectrics with excellent processability and high breakdown strength (Eb ) enable the development of high-energy-density capacitors. Although the improvement of dielectric constant (K) of polymer dielectric has been realized by adding high-K inorganic fillers with high contents (>10 vol%), this approach faces significant challenges in scalable film processing. Here, the incorporation of ultralow ratios (<1 vol%) of low-K Cd1- x Znx Se1- y Sy nanodots into a ferroelectric polymer is reported. The polymer composites exhibit substantial and concurrent increase in both K and Eb , yielding a discharged energy density of 26.0 J cm-3 , outperforming the current dielectric polymers and nanocomposites measured at ≤600 MV m-1 . The observed unconventional dielectric enhancement is attributed to the structural changes induced by the nanodot fillers, including transformation of polymer chain conformation and induced interfacial dipoles, which have been confirmed by density function theory calculations. The dielectric model established in this work addresses the limitations of the current volume-average models on the polymer composites with low filler contents and gives excellent agreement to the experimental results. This work provides a new experimental route to scalable high-energy-density polymer dielectrics and also advances the fundamental understanding of the dielectric behavior of polymer nanocomposites at atomistic scales.

13.
Front Cell Dev Biol ; 9: 671247, 2021.
Article in English | MEDLINE | ID: mdl-34178997

ABSTRACT

Radiotherapy remains one of the most important cancer treatment modalities. In the course of radiotherapy for tumor treatment, the incidental irradiation of adjacent tissues could not be completely avoided. DNA damage is one of the main factors of cell death caused by ionizing radiation, including single-strand (SSBs) and double-strand breaks (DSBs). The growth hormone-Insulin-like growth factor 1 (GH-IGF1) axis plays numerous roles in various systems by promoting cell proliferation and inhibiting apoptosis, supporting its effects in inducing the development of multiple cancers. Meanwhile, the GH-IGF1 signaling involved in DNA damage response (DDR) and DNA damage repair determines the radio-resistance of cancer cells subjected to radiotherapy and repair of adjacent tissues damaged by radiotherapy. In the present review, we firstly summarized the studies on GH-IGF1 signaling in the development of cancers. Then we discussed the adverse effect of GH-IGF1 signaling in radiotherapy to cancer cells and the favorable impact of GH-IGF1 signaling on radiation damage repair to adjacent tissues after irradiation. This review further summarized recent advances on research into the molecular mechanism of GH-IGF1 signaling pathway in these effects, expecting to specify the dual characters of GH-IGF1 signaling pathways in radiotherapy and post-radiotherapy repair of cancers, subsequently providing theoretical basis of their roles in increasing radiation sensitivity during cancer radiotherapy and repairing damage after radiotherapy.

14.
Front Genet ; 12: 607910, 2021.
Article in English | MEDLINE | ID: mdl-33692824

ABSTRACT

Maternally expressed gene 3 (MEG3) is a long non-coding RNA that is a crucial regulator of skeletal muscle development. Some single-nucleotide polymorphism (SNP) mutants in MEG3 had strong associations with meat quality traits. Nevertheless, the function and mechanism of MEG3 mutants on porcine skeletal muscle development have not yet been well-demonstrated. In this study, eight SNPs were identified in MEG3 of fat- and lean-type pig breeds. Four of these SNPs (g.3087C > T, g.3108C > T, g.3398C > T, and g.3971A > C) were significantly associated with meat quality and consisted of the CCCA haplotype for fat-type pigs and the TTCC haplotype for lean-type pigs. Quantitative real-time PCR results showed that the expression of MEG3-TTCC was higher than that of MEG3-CCCA in transcription level (P < 0.01). The stability assay showed that the lncRNA stability of MEG3-TTCC was lower than that of MEG3-CCCA (P < 0.05). Furthermore, the results of qRT-PCR, Western blot, and Cell Counting Kit-8 assays demonstrated that the overexpression of MEG3-TTCC more significantly inhibited the proliferation of porcine skeletal muscle satellite cells (SCs) than that of MEG3-CCCA (P < 0.05). Moreover, the overexpression of MEG3-TTCC more significantly promoted the differentiation of SCs than that of MEG3-CCCA (P < 0.05). The Western blot assay suggested that the overexpression of MEG3-TTCC and MEG3-CCCA inhibited the proliferation of SCs by inhibiting PI3K/AKT and MAPK/ERK1/2 signaling pathways. The overexpression of the two haplotypes also promoted the differentiation of SCs by activating the JAK2/STAT3 signaling pathway in different degrees. These data are valuable for further studies on understanding the crucial role of lncRNAs in skeletal muscle development.

15.
Front Cell Dev Biol ; 8: 623, 2020.
Article in English | MEDLINE | ID: mdl-32754602

ABSTRACT

Owing to the wide application of miniature pigs in biomedicine, the formation mechanism of its short stature must be elucidated. The insulin-like growth factor 1 receptor (IGF-1R), which receives signals through the extracellular domain (ECD) binding with ligands, is crucial in regulating cell growth and bone matrix mineralization. In this study, two haplotypes of Igf1r with four synonymous mutations in the coding sequences of IGF-1R ECD between large pigs (LP) and Bama pigs (BM) were stably expressed in the Igf1r-knockout MC3T3-E1 cells and named as MC3T3-LP cells (LP group) and MC3T3-BM cells (BM group), respectively. IGF-1R expression was lower in the BM group than in the LP group both in terms of transcription and translation levels, and IGF-1R expression inhibited cell proliferation. In addition, IGF-1R expression in the BM group promoted early-stage differentiation but delayed late-stage differentiation, which not only suppressed the expression of bone-related factors but also reduced alkaline phosphatase activity and calcium deposition. Moreover, different haplotypes of Igf1r changed the stability and conformation of the protein, further affecting the binding with IGF-1. Our data indicated that the four synonymous mutations of IGF1R ECD encoded by affect gene transcription and translation, thereby further leading to differences in the downstream pathways and functional changes of osteoblasts.

16.
RNA Biol ; 17(12): 1754-1766, 2020 12.
Article in English | MEDLINE | ID: mdl-32508238

ABSTRACT

Growth hormone (GH), whose synthesis and release are mainly regulated by intracellular signals mediated by growth hormone-releasing hormone receptor (GHRHR), is one of the major pituitary hormones and critical regulators of organism growth, metabolism, and immunoregulation. Pig GHRHR splice variants (SVs) may activate different signalling pathways via the variable C-terminal by alternative splicing, and SVs have the potential to change microRNA (miRNA) binding sites. In this study, we first confirmed the existence of pig GHRHR SVs (i.e., GHRHR, GHRHR SV1 and SV2) and demonstrated the inhibitory effects of critical pituitary miRNAs (i.e., let-7e and miR-328-5p) on GH synthesis and cell proliferation of primary pituitary cells. The SVs of GHRHR targeted by let-7e and miR-328-5p were predicted via bioinformatics analysis and verified by performing dual-luciferase reporter assays and detecting the expression of target transcripts. The differential responses of let-7e, and miR-328-5p to GH-releasing hormone and the changes in signalling pathways mediated by GHRHR suggested that let-7e and miR-328-5p were involved in GH synthesis mediated by GHRHR SVs, indicating that the two miRNAs played different roles by different ways. Finally, results showed that the protein coded by the GHRHR transcript regulated GH through the NO/NOS signalling pathway, whereas that coded by SV1 and SV2 regulated GH through the PKA/CREB signalling pathway, which was confirmed by the changes in signalling pathways after transfecting the expression vectors of GHRHR SVs to GH3 cells. To the best of our knowledge, this paper is the first to report pituitary miRNAs regulate GH synthesis by targeting the different SVs of GHRHR.


Subject(s)
Alternative Splicing , Growth Hormone/metabolism , MicroRNAs/metabolism , Pituitary Gland/metabolism , RNA Interference , Receptors, Pituitary Hormone-Regulating Hormone/genetics , Signal Transduction , Animals , Cell Line , Cell Proliferation , Cell Survival/genetics , Computational Biology , Female , Gene Expression Profiling , Gene Expression Regulation , Growth Hormone/genetics , MicroRNAs/genetics , Nitric Oxide/metabolism , Swine
17.
Bioorg Chem ; 100: 103931, 2020 07.
Article in English | MEDLINE | ID: mdl-32450385

ABSTRACT

Acute mountain sickness (AMS) affects approximately 25-50% of newcomers to high altitudes. Two human carbonic anhydrase isoforms, hCA I and II, play key roles in developing high altitude illnesses. However, the only FDA-approved drug for AMS is acetazolamide (AAZ), which has a nearly 100 times weaker inhibitory activity against hCA I (Ki = 1237.10 nM) than hCA II (Ki = 13.22 nM). Hence, developing potent dual hCA I/II inhibitors for AMS prevention and treatment is a critical medical need. Here we identified N-quinary heterocycle-4-sulphamoylbenzamides as potent hCA I/II inhibitors. The newly designed compounds 2b, 5b, 5f, 6d, and 6f possessed the desired inhibitory activities (hCA I: Ki = 16.95-52.71 nM; hCA II: Ki = 8.61-18.64 nM). Their hCA I inhibitory capacity was 22- to 76-fold stronger than that of AAZ. Relative to the control group for survival in a mouse model of hypoxia, 2b and 6d prolonged the survival time of mice by 21.7% and 29.3%, respectively, which was longer than those of AAZ (6.5%). These compounds did not display any apparent toxicity in vitro and in vivo. In addition, docking simulations suggested that the quinary aromatic heterocycle groups stabilised the interaction between hCA I/II and the inhibitors, which could be further exploited in structure optimization studies. Hence, future functional studies may confirm 2b and 6d as potential clinical candidate compounds with anti-hypoxic activity against AMS.


Subject(s)
Benzamides/chemistry , Carbonic Anhydrase II/antagonists & inhibitors , Carbonic Anhydrase I/antagonists & inhibitors , Carbonic Anhydrase Inhibitors/chemistry , Animals , Benzamides/metabolism , Benzamides/pharmacology , Binding Sites , Carbonic Anhydrase I/metabolism , Carbonic Anhydrase II/metabolism , Carbonic Anhydrase Inhibitors/metabolism , Carbonic Anhydrase Inhibitors/pharmacology , Cell Survival/drug effects , Drug Design , HEK293 Cells , Humans , Isoenzymes/antagonists & inhibitors , Isoenzymes/metabolism , Kinetics , Locomotion/drug effects , Mice , Molecular Docking Simulation , Structure-Activity Relationship
18.
Gene ; 749: 144703, 2020 Jul 30.
Article in English | MEDLINE | ID: mdl-32339623

ABSTRACT

The repair of segmental bone defects and bone fractures is a clinical challenge involving high risk and postsurgical morbidity. Bone injury and partial bone tumor resection via traditional bone grafting result in high complications. Growth factors have been proposed as alternatives to promote bone repair and formation and circumvent these limitations. In this study, we classified different lengths of mechano growth factor (MGF) E peptides in different species and analyzed their effects on MC3T3-E1 cell proliferation, cell cycle, alkaline phosphatase (ALP) activity, differentiation-related factor expression, and cell mineralization. A rabbit bone injury model was constructed, and the repair function of MGF E peptide was verified by injecting the candidate MGF E peptide. We analyzed 52 different MGF-E peptides and classified them into the following four categories: T-MGF-25E, M-MGF-25E, T-MGF-19E, and M-MGF-19E. These peptides were synthesized for further study. T-MGF-19E peptide obviously promoted cell proliferation by regulating cell cycle after MGF E peptide treatment at 72 h. T-MGF-25E and T-MGF-19E peptide significantly promoted the differentiation of osteoblasts on day 14, and M-MGF-25E peptide promoted cell differentiation on day 7. T-MGF-19E, T-MGF-25E, and M-MGF-19E significantly promoted osteoblast mineralization, with T-MGF19E showing the most significant effect. These results implied that T-MGF19E peptide could remarkably promote MC3T3-E1 cell proliferation, differentiation, and mineralization. The rabbit bone defect model showed that the low-dose T-MGF-19E peptide significantly promoted bone injury healing, suggesting its promoting effect on the healing of bone injury.


Subject(s)
Bone and Bones/drug effects , Calcification, Physiologic/drug effects , Cell Proliferation/drug effects , Insulin-Like Growth Factor I/pharmacology , Osteogenesis/drug effects , Wound Healing/drug effects , Alkaline Phosphatase/metabolism , Animals , Bone and Bones/physiology , Cell Cycle/drug effects , Cell Line , Gene Expression/drug effects , Humans , Mice , Osteoblasts/cytology , Osteoblasts/drug effects , Osteoblasts/metabolism , Osteogenesis/genetics
19.
Domest Anim Endocrinol ; 72: 106430, 2020 07.
Article in English | MEDLINE | ID: mdl-32171113

ABSTRACT

The kidney of miniature pigs has been considered the most likely potential kidney source for patients needing kidney transplantation. Insulin-like growth factor 1 (IGF-1) is involved in regulating the growth of miniature pigs and inducing growth of kidneys. There are evidences showing that the SNPs in the 3'UTR of a gene may affect the gene expression by affecting the binding to a miRNA target site. In this study, one SNP (rs34142920) was screened in the IGF-1 3'UTR between 2 different body types of porcine breeds, Bama Xiang (BX) pigs, a miniature pig breed, and Large White (LW) pigs by sequencing. The secondary structure of the IGF-1 3'UTR mRNA containing the SNP in BX pigs is different from that of LW pigs. We then verified that there was a porcine miRNA (miR-new14) binding to this SNP in the 3'UTR of IGF-1 via cotransfecting the 3'UTR from the 2 breeds and miR-new14. We further found that the SNP downregulated mRNA and protein levels of IGF-1 by affecting the binding of miR-new14. To understand the function of miR-new14 in porcine kidney (PK-15) cells and its mechanism, cell proliferation and cell apoptosis assays were employed and results showed that proliferation viability of PK-15 cells was weakened and the apoptotic percentage of PK-15 cells was higher in the miR-new14 group. Porcine miRNA reduced the mRNA expression of AKT/ERK and protein levels of p-AKT/p-ERK. These results suggested that the expression of IGF-1 is influenced by this SNP and miR-new14 and that miR-new14 may suppress cell proliferation and promote cell apoptosis in PK-15 cells through regulating AKT and ERK signaling pathways, in which IGF-1 is involved.


Subject(s)
3' Untranslated Regions , Gene Expression Regulation/physiology , Insulin-Like Growth Factor I/metabolism , MicroRNAs/metabolism , Polymorphism, Single Nucleotide , Swine , Animals , Apoptosis , Cell Line , Cell Proliferation , Insulin-Like Growth Factor I/genetics , MicroRNAs/genetics
20.
Int J Biol Macromol ; 152: 147-153, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32109480

ABSTRACT

Miniature pigs are regarded as ideal organ donors for xenotransplantation into humans. Elucidating the formation mechanism of miniature pigs is important. The insulin-like growth factor 1 receptor (IGF-1R) is crucial in the regulation of cell proliferation and organismal growth. According to our previous research, the IGF-1R expression levels between large and miniature pigs showed different profiles in liver and muscle tissues. Here, five synonymous mutations of IGF-1R in the coding sequence (CDS) of intracellular domain (ICD) between large and miniature pigs were analysed by constructing expression vectors of two haplotypes and named pcDNA3.1-LP (with the CDS of IGF-1R ICD of Large White pigs, LP group) and pcDNA3.1-BM (with the CDS of IGF-1R ICD of Bama Xiang pigs, BM group). The IGF-1R of the BM group was expressed lower than that of the LP group in transcription, translation and autophosphorylation levels. The IGF-1R of the BM group also down-regulated the protein levels of p-AKT/p-ERK than that of the LP group. PK-15 and C2C12 cell proliferation were detected to further understand the function of the haplotype. Results showed that the proliferation viability of PK-15 and C2C12 cells weakened in the BM group. Moreover, the mRNA and protein stabilities of the BM group were higher than those of the LP group. Our data indicated that two haplotypes of IGF-1R CDS in ICD between large and miniature pigs altered IGF-1R expression and down-regulated AKT and ERK signalling pathways at translation levels, resulting in an inhibitory effect on PK-15 and C2C12 cell proliferation.


Subject(s)
Intracellular Space/metabolism , Receptor, IGF Type 1/genetics , Receptor, IGF Type 1/metabolism , Silent Mutation , Animals , Cell Line , Cell Proliferation/genetics , Genetic Loci/genetics , Haplotypes , Phosphorylation/genetics , Polymorphism, Single Nucleotide , Protein Domains , RNA, Messenger/genetics , Receptor, IGF Type 1/chemistry , Signal Transduction/genetics , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...