Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chaos ; 33(7)2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37433653

ABSTRACT

Urban road networks (URNs), as simplified views and important components of cities, have different structures, resulting in varying levels of transport efficiency, accessibility, resilience, and many socio-economic indicators. Thus, topological characteristics of URNs have received great attention in the literature, while existing studies have used various boundaries to extract URNs for analysis. This naturally leads to the question of whether topological patterns concluded using small-size boundaries keep consistent with those uncovered using commonly adopted administrative boundaries or daily travel range-based boundaries. This paper conducts a large-scale empirical analysis to reveal the boundary effects on 22 topological metrics of URNs across 363 cities in mainland China. Statistical results show that boundaries have negligible effects on the average node degree, edge density, orientation entropy of road segments, and the eccentricity for the shortest or fastest routes, while other metrics including the clustering coefficient, proportion of high-level road segments, and average edge length together with route-related metrics such as average angular deviation show significant differences between road networks extracted using different boundaries. In addition, the high-centrality components identified using varied boundaries show significant differences in terms of their locations, with only 21%-28% of high-centrality nodes overlapping between the road networks extracted using administrative and daily travel range-based boundaries. These findings provide useful insights to assist urban planning and better predict the influence of a road network structure on the movement of people and the flow of socio-economic activities, particularly in the context of rapid urbanization and the ever-increasing sprawl of road networks.

2.
Sensors (Basel) ; 22(15)2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35898053

ABSTRACT

Crop diseases are one of the important factors affecting crop yield and quality and are also an important research target in the field of agriculture. In order to quickly and accurately identify crop diseases, help farmers to control crop diseases in time, and reduce crop losses. Inspired by the application of convolutional neural networks in image identification, we propose a lightweight crop disease image identification model based on attentional feature fusion named DSGIResNet_AFF, which introduces self-built lightweight residual blocks, inverted residuals blocks, and attentional feature fusion modules on the basis of ResNet18. We apply the model to the identification of rice and corn diseases, and the results show the effectiveness of the model on the real dataset. Additionally, the model is compared with other convolutional neural networks (AlexNet, VGG16, ShuffleNetV2, MobileNetV2, MobileNetV3-Small and MobileNetV3-Large), and the experimental results show that the accuracy, sensitivity, F1-score, AUC of the proposed model DSGIResNet_AFF are 98.30%, 98.23%, 98.24%, 99.97%, respectively, which are better than other network models, while the complexity of the model is significantly reduced (compared with the basic model ResNet18, the number of parameters is reduced by 94.10%, and the floating point of operations(FLOPs) is reduced by 86.13%). The network model DSGIResNet_AFF can be applied to mobile devices and become a useful tool for identifying crop diseases.


Subject(s)
Image Processing, Computer-Assisted , Neural Networks, Computer , Image Processing, Computer-Assisted/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...