Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
Add more filters










Publication year range
1.
Langmuir ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982769

ABSTRACT

Superwettable materials have been attracting attention due to their unique properties, showing great application prospects in a variety of fields including oil-water separation. Herein, a kind of covalent organic framework (COF)-encapsulated melamine sponge (MS) capable of internal superwettability inversion is prepared by a one-step synthesis at room temperature. COF is produced in situ on the skeleton of MS, which is favorable for practical application, and the prepared COF-encapsulated sponge (MS@COF) exhibits superhydrophobicity (water contact angle of about 157.0°) due to the rough surface provided by the micro/nanostructure of COF. More importantly, MS@COF displays reversibly superhydrophilicity by simple prewetting, achieving superwettability inversion conveniently, unlike the previous switchable materials that rely on external conditions. This facile intrinsic superwettability inversion greatly enriches the application prospects of this kind of smart sponge.

2.
Macromol Rapid Commun ; : e2400156, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38683686

ABSTRACT

This work reports preparing thermal responsive poly (N-isovinylcaprolactam) (PNVCL) microgel based films for cell growth and detachment. PNVCL microgels of hydrated size ranging from 386 to 815 nm (25 °C) and different crosslinking degree are prepared. The PNVCL microgels can be rapidly and massively deposited on glass by spin coating method. Atomic force microscopy (AFM) and water contact angle (WCA) are used to study the influence of crosslinking degree and particle size on the surface morphology, stability, and hydrophilicity of PNVCL microgel film. The cell activity of the desorbed cells is quantitatively characterized employing human normal lung epithelial cells (BEAS-2B). The results show that BEAS-2B cells can be desorbed quickly from the film in 30 min, and the optical density (OD) value of desorbed cells incubated after 3 d increases by approximately 52% compared to the control group. This study broadens the selection of temperature-sensitive film for cell harvesting, and provides a new tool for the quantitative characterization of desorbed cells.

3.
ACS Appl Mater Interfaces ; 15(35): 41916-41926, 2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37610709

ABSTRACT

Soft actuators with photo-response can be selectively driven by the light source, but it is challenging to achieve a selective response of multiple components under a uniform light field, which is actually of great importance for the development of soft robots. In this work, a series of near-infrared light (NIR)-responsive vitrimers (CR-vitrimers) are synthesized by carboxylate transesterification using carboxyl-bearing croconaine dye (CR-800) as a photothermal agent (PTA). NIR-responsive liquid crystalline elastomers (CR-vitrimer-LCEs) under NIR laser (λmax = 808 nm) without the template can be further prepared. More importantly, the dynamic covalent bonding properties of vitrimer allow for the fabrication of a hand-shaped actuator by hot pressing, consisting of "fingers" with different NIR-response threshold values. After programming as needed, the hand-shaped actuator successfully achieves local and sequential control under a uniform NIR light field.

4.
ACS Macro Lett ; 12(2): 165-171, 2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36656621

ABSTRACT

In order to give an answer for the challenges of long wavelength-photocontrolled radical polymerization in aqueous solutions and to address the shortcomings of conventional near-infrared (NIR) photocatalysts (PCs) that are difficult to subject to post-treatment, we designed and synthesized a series of ß-tetra-substituted water-soluble zinc phthalocyanines (ß-TS-Zns) as the NIR PCs for reversible addition-fragmentation chain transfer (RAFT) polymerization successfully under irradiation with NIR (λmax = 730 nm) light at room temperature. Importantly, the NIR PCs can also be designed as polymerizable monomers and covalently loaded on the polymer chains, which are endowed with permanent NIR photocatalysis of the resultant polymers. Moreover, the polymerization can not only be carried out in water but also in phosphate buffer saline (PBS) solution, yielding polymers with controlled molar mass and narrow dispersities (D = 1.03-1.25). Therefore, this NIR-photocontrolled aqueous RAFT polymerization system may provide a charming strategy for possible applications in tissue engineering biomaterial in situ benefiting from the high penetration ability of NIR light.

5.
Macromol Rapid Commun ; 44(2): e2200570, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36104160

ABSTRACT

Fluorinated copolymers can self-assemble in solution and form micelles with rare properties due to the peculiar behavior of fluorinated groups. However, the process description of the self-assembly is still largely phenomenological and difficult to explain due to the tendency of the fluorinated segments to segregate from both the hydrophilic and lipophilic segments, which can result in various morphologies. Herein, the controlled formation of ellipsoidal micelles, disklike micelles, and sheets by hierarchical self-assembly of triphilic main-chain-type semifluorinated alternating graft copolymers (AB)n A-g-mOEG is presented (where A represents unit of α,ω-diiodoperfluoroalkane, B represents the unit of α,ω-unconjugated diene, and mOEG represents methoxy oligo(ethylene glycol)), which are synthesized by step transfer-addition and radical-termination (START) polymerization and azide-alkyne click chemistry. Furthermore, the possible self-assembly mechanism of these micron-level aggregates is proposed, which is ascribed to the hierarchical self-assembly, crowding effect of hydrophilic chains and the interfacial tension between the fluoroalkane and alkane segments. This study can provide a facile and highly efficient approach to the synthesis of main-chain-type fluorinated graft copolymers and expand the research field for the solution self-assembly of fluorinated copolymers.


Subject(s)
Micelles , Polymers , Polymers/chemistry , Water/chemistry , Polymerization , Hydrophobic and Hydrophilic Interactions
6.
Biomater Sci ; 11(2): 509-517, 2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36533394

ABSTRACT

Unimolecular micelles (UIMs) exhibit promising potential in the precise diagnosis and accurate treatment of tumor tissues, a pressing problem in the field of medical treatment, because of their perfect stability in the complex and variable microenvironment. In this study, porphyrin-based four-armed star-shaped block polymers with narrow molar mass dispersity (D = 1.34) were facilely prepared by photocontrolled bromine-iodine transformation reversible-deactivation radical polymerization (BIT-RDRP). A photothermal conversion dye, ketocyanine, was covalently linked onto the PEG and then introduced into the polymers through a "grafting onto" strategy to obtain polymeric nanomaterial, THPP-4PMMA-b-4P(PEGMA-co-APMA)@NIR-800, with dual PTT/PDT function. The resulting polymers could form monodispersed UIMs in the water below critical aggregation concentration, meanwhile maintaining the capacities of singlet oxygen release and photothermal conversion. Importantly, the UIMs displayed excellent biocompatibility while exerting superior PTT and/or PDT therapeutic effects under the irradiation of specific wavelengths of light, according to in vitro cellular experiments, which is expected to become a new hot spot for cancer therapy and anti-tumor research. Overall, stable and powerful UIMs with dual PTT/PDT function is provided, which are expected to be competitive candidates in cancer therapy.


Subject(s)
Neoplasms , Photochemotherapy , Humans , Photochemotherapy/methods , Photosensitizing Agents , Micelles , Polymers/therapeutic use , Bromine/therapeutic use , Polymerization , Neoplasms/drug therapy , RNA-Dependent RNA Polymerase/therapeutic use , Tumor Microenvironment
7.
Macromol Rapid Commun ; 43(19): e2200266, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35792024

ABSTRACT

Side-chain liquid crystalline polymer (SCLCP) usually contains a simple and flexible homopolymer as main chain, while its effect on the self-assembly behavior is often ignored. In this work, in order to increase the structural complexity and investigate the interaction between the main chain and mesogens, perfluorinated segments are introduced into the main chain using a photoinduced Step Transfer-Addition & Radical-Termination polymerization method, producing a novel series of SCLCPs containing 4-methoxyphenyl benzoate mesogens, soft hydrocarbon spacers, and a strictly alternating perfluoroalkyl and alkyl backbone. By adjusting the length of spacers or perfluoroalkyl segments, several mesophases with complex chain packing structures are achieved. This design strategy that constructing highly ordered liquid crystalline (LC) structures from SCLCPs with precise chemical structure provides a facile way toward novel LC nanomaterials.

8.
Chem Commun (Camb) ; 58(35): 5383-5386, 2022 Apr 28.
Article in English | MEDLINE | ID: mdl-35412535

ABSTRACT

Introducing fluoroalkyl chains into metallopolymers is a prerequisite to studying the self-organization effect of fluoroalkyl chains and their structure-property relationship. In this work, we present a fluorinated metallopolymer to build an alternating conduction-insulation "molecular fence" model synthesized by the coordination of Ru(II) and a bis-terpyridine-end-capped-phenyl (BTP) ligand modified with fluoroalkyl chains. Taking advantage of scanning tunneling microscopy (STM), a well-aligned periodic linear layered structure is observed clearly, which provides the most direct visualization of the self-organization effect of fluoroalkyl chains for the first time. In addition, combining ultraviolet-visible (UV-vis) absorption spectroscopy and theoretical calculations, we find that fluoroalkyl chains demonstrate a septation effect between two adjacent metallopolymer chains and further restrain the occurrence of interchain charge-transfer transition (ICCT) due to their closed packed structure. This "molecular fence" model can provide a novel route for electron conduction in molecular networks and guide potential applications in the materials science field.

9.
Chem Commun (Camb) ; 57(86): 11354-11357, 2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34643625

ABSTRACT

In this work, we report a much simpler and low-cost method to prepare main-chain-type semifluorinated alternating copolymers by the formation of a halogen bond (XB) complex between α,ω-diiodoperfluoroalkanes and amines/halide salts. It is interesting that the terminal iodine functional group of the polymer chains is easily lost in the amine-promoted system, while the loss can be significantly reduced by adding a small amount of water. Importantly, the system promoted by halide salts can ensure complete retention of the iodine functional group. Overall, the establishment of this method provides a new strategy for designing smart fluoropolymer materials in a green and environmentally friendly facile manner under irradiation with visible light at room temperature.

10.
Macromol Rapid Commun ; 42(15): e2100211, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34028909

ABSTRACT

A facile and clean strategy for synthesizing unimodal polymethacrylates with narrow dispersity (D < 1.10) is successfully developed by a near-infrared (NIR) light-emitting diode (LED) light (λmax = 740 nm)-controlled in situ bromine-iodine transformation reversible-deactivation radical polymerization system without the use of NIR dyes and expensive catalysts. In this system, alkyl iodide ethyl α-iodophenylacetate (EIPA) initiator is generated in situ by the nucleophilic substitution reaction between an alkyl bromide compound ethyl α-bromophenylacetate and sodium iodide (NaI). At the same time, excessive NaI is also acted as a highly active catalyst by forming halogen bonds with terminal iodine of the polymer chains in this system to make it capable of precisely synthesizing polymethacrylates with narrow dispersities (D = 1.03-1.10). In addition, the strong penetration ability of NIR LED light is illustrated by the successful polymerization even through 11 pieces of A4 paper.


Subject(s)
Bromine , Iodine , Iodides , Polymerization , Polymethacrylic Acids
11.
ACS Macro Lett ; 10(5): 564-569, 2021 May 18.
Article in English | MEDLINE | ID: mdl-35570758

ABSTRACT

In recent years, crystalline-driven self-assembly (CDSA) has received enormous attention, but almost only for block copolymers (BCPs). Herein, we introduced perfluorocarbon chains into main-chain-type liquid crystalline alternating copolymers (ACPs) to obtain perfluoroalkane-containing ACPs with periodic C-I bonds in polymer backbones via step transfer-addition and radical-termination (START) polymerization, followed by an iodine reduction reaction of C-I bonds to induce CDSA of ACPs and put forward a novel concept of "reduction-induced crystallization-driven self-assembly" (RI-CDSA) of main-chain-type ACPs for the first time. Finally, we proposed the folded-chain model and mechanism to explain the novel RI-CDSA behavior, and its rationality has been proved by the corresponding experimental results.

12.
Polymers (Basel) ; 12(5)2020 May 21.
Article in English | MEDLINE | ID: mdl-32455766

ABSTRACT

Polymeric nanomaterials made from amphiphilic block copolymers are increasingly used in the treatment of tumor tissues. In this work, we firstly synthesized the amphiphilic block copolymer PBnMA-b-P(BAPMA-co-PEGMA) via reversible addition-fragmentation chain transfer (RAFT) polymerization using benzyl methacrylate (BnMA), poly (ethylene glycol) methyl ether methacrylate (PEGMA), and 3-((tert-butoxycarbonyl)amino)propyl methacrylate (BAPMA) as the monomers. Subsequently, PBnMA-b-P(APMA-co-PEGMA)@NIR 800 with photothermal conversion property was obtained by deprotection of the tert-butoxycarbonyl (BOC) groups of PBAPMA chains with trifluoroacetic acid (TFA) and post-modification with carboxyl functionalized ketocyanine dye (NIR 800), and it could self-assemble into micelles in CH3OH/water mixed solvent. The NIR photothermal conversion property of the post-modified micelles were investigated. Under irradiation with NIR light (λmax = 810 nm, 0.028 W/cm2) for 1 h, the temperature of the modified micelles aqueous solution increased to 53 °C from 20 °C, which showed the excellent NIR photothermal conversion property.

13.
Polymers (Basel) ; 12(1)2020 Jan 07.
Article in English | MEDLINE | ID: mdl-31936063

ABSTRACT

Polymerization-induced self-assembly (PISA) has become an effective strategy to synthesize high solid content polymeric nanoparticles with various morphologies in situ. In this work, one-step PISA was achieved by in situ photocontrolled bromine-iodine transformation reversible-deactivation radical polymerization (hereinafter referred to as Photo-BIT-RDRP). The water-soluble macroinitiator precursor α-bromophenylacetate polyethylene glycol monomethyl ether ester (mPEG1k-BPA) was synthesized in advance, and then the polymer nanomicelles (mPEG1k-b-PBnMA and mPEG1k-b-PHPMA, where BnMA means benzyl methacrylate and HPMA is hydroxypropyl methacrylate) were successfully formed from a PISA process of hydrophobic monomer of BnMA or HPMA under irradiation with blue LED light at room temperature. In addition, the typical living features of the photocontrolled PISA process were confirmed by the linear increase of molecular weights of the resultant amphiphilic block copolymers with monomer conversions and narrow molecular weight distributions (Mw/Mn < 1.20). Importantly, the photocontrolled PISA process is realized by only one-step method by using in situ photo-BIT-RDRP, which avoids the use of transition metal catalysts in the traditional ATRP system, and simplifies the synthesis steps of nanomicelles. This strategy provides a promising pathway to solve the problem of active chain end (C-I) functionality loss in two-step polymerization of BIT-RDRP.

14.
Phys Chem Chem Phys ; 22(3): 981-984, 2020 Jan 21.
Article in English | MEDLINE | ID: mdl-31912822

ABSTRACT

Herein, we propose a new approach of molecule occupancy via a vapor treatment to facilitate the conversion of PbI2 to perovskite in sequential deposition. We have shown that the morphology of PbI2 and the subsequent crystallization of perovskite can be effectively tuned, thus leading to the elimination of residual PbI2 and promotion of perovskite growth.

15.
Angew Chem Int Ed Engl ; 59(10): 3910-3916, 2020 Mar 02.
Article in English | MEDLINE | ID: mdl-31880856

ABSTRACT

Herein, near-infrared (NIR) photocontrolled iodide-mediated reversible-deactivation radical polymerization (RDRP) of methacrylates, without an external photocatalyst, was developed using an alkyl iodide (e.g., 2-iodo-2-methylpropionitrile) as the initiator at room temperature. This example is the first use of a series of special solvents containing carbonyl groups (e.g., 1,3-dimethyl-2-imidazolidinone) as both solvent and catalyst for photocontrolled RDRP using long-wavelength (λmax =730 nm) irradiation. The polymerization system comprises monomer, alkyl iodide initiator, and solvent. Well-defined polymers were synthesized with excellent control over the molecular weights and molecular weight distributions (Mw /Mn <1.21). The living features of this system were confirmed by polymerization kinetics, multiple controlled "on-off" light switching cycles, and chain extension experiments. Importantly, the polymerizations proceeded successfully with various barriers (pork skin and A4 paper), demonstrating the advantage of high-penetration NIR light.

16.
ACS Macro Lett ; 8(11): 1419-1425, 2019 Nov 19.
Article in English | MEDLINE | ID: mdl-35651188

ABSTRACT

Photocontrolled iodine-mediated reversible-deactivation radical polymerization (RDRP) is a facile and highly efficient access to precision polymers. Herein, a facile photocontrolled iodine-mediated green RDRP strategy was successfully established in water by using 2-iodo-2-methylpropionitrile (CP-I) as the initiator and water-soluble functional monomers including poly(ethylene glycol) methyl ether methacrylate (PEGMA), 2-hydroxyethyl methacrylate (HEMA), and 2-hydroxypropyl methacrylate (HPMA) as the model monomers under blue-light-emitting diode (LED) irradiation at room temperature. Well-defined polymers (PPEGMA, PHEMA, PHPMA) with narrow polydispersities (1.09-1.21) were obtained, and amphiphilic block copolymers which can form nanospheres in situ in water (PPEGMA-b-poly(benzyl methacrylate) (PPEGMA-b-PBnMA) and PPEGMA-b-PHPMA) were prepared. To explore the role of water in our polymerization, control experiments were successfully carried out by using oil-soluble monomer methyl methacrylate (MMA) with the help of trace amounts of water. Notably, the green solvent-water-has an additionally positive effect in accelerating the polymerization and makes our polymerization system an environmentally friendly polymerization system. Therefore, this simple strategy conducted in the presence of water enables the green preparation of well-defined water-soluble or water-insoluble polymers and clean synthesis of amphiphilic copolymer nanoparticles in situ.

17.
Macromol Rapid Commun ; 40(2): e1800327, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30027663

ABSTRACT

A series of hydrophilic poly(poly(ethylene glycol) methyl ether methacrylate) (PPEGMA) macroinitiators and stabilizers are synthesized in methanol through in situ photo-controlled bromine-iodine transformation living radical polymerization, where ethyl α-bromophenylacetate (EBPA) is the initial initiator and is converted to an iodo-type initiator in the presence of NaI. The subsequent photo-controlled polymerization-induced self-assembly (photo-PISA) process is achieved by adding a second monomer, hydrophobic benzyl methacrylate (BnMA), under irradiation with blue light emitting diode (LED) light at room temperature. The effect of the target degree of polymerization (DP) of PPEGMA, PBnMA, as well as the solids content on the self-assembly behavior of block copolymer PPEGMA-b-PBnMA is evaluated by gel permeation chromatography (GPC), nuclear magnetic resonance (NMR) spectroscopy, transmission electron microscopy (TEM), and dynamic light scattering (DLS) characterization. Resulting uniform spherical micelles and vesicle aggregates are observed.


Subject(s)
Bromine/chemistry , Chemistry Techniques, Synthetic/methods , Iodine/chemistry , Light , Polymerization/radiation effects , Polymethacrylic Acids/chemistry , Chromatography, Gel , Dynamic Light Scattering , Hydrophobic and Hydrophilic Interactions , Methacrylates/chemistry , Methanol/chemistry , Microscopy, Electron, Transmission , Models, Chemical , Molecular Structure , Polymethacrylic Acids/chemical synthesis
18.
Macromol Rapid Commun ; 39(15): e1800151, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29900627

ABSTRACT

Through the construction of an organic photocatalysis system, photoredox catalyst (PC)/additive, where PC stands for photoredox catalyst, an organocatalyzed step transfer-addition and radical-termination (O-START) polymerization irradiated by blue LED light at room temperature is realized. Different types of α,ω-diiodoperfluoroalkane A and α,ω-unconjugated diene B are copolymerized through O-START efficiently, and generate various kinds of functional semifluorinated polymers, including polyolefins and polyesters. The process is affected by several factors; solvents, additives, and feed ratio of A to B. After optimization of all these components, the polymerization efficiency is greatly improved, generating polymers with both relatively high yield and molecular weight. Considering the mild reaction condition, easy operation process, and free-of-metal-catalyst residues in the polymer product, the organocatalytic polymerization strategy provides a simple and efficient approach to functional semifluorinated polymer materials and hopefully opens up their application in high-tech fields.


Subject(s)
Borates/chemistry , Eosine Yellowish-(YS)/chemistry , Hydrocarbons, Fluorinated/chemical synthesis , Light , Polymers/chemistry , Pyrans/chemistry , Catalysis , Halogenation , Hydrocarbons, Fluorinated/chemistry , Photochemical Processes , Polymerization , Temperature
19.
Nanoscale ; 10(21): 10277-10287, 2018 May 31.
Article in English | MEDLINE | ID: mdl-29790554

ABSTRACT

The performance of functional polymer nanomaterials is a vigorously discussed topic in polymer science. We devoted ourselves to investigating polymer nanomaterials based on near-infrared (NIR) fluorescence imaging and polymer prodrug in this study. Aza-boron dipyrromethene (BODIPY) is an important organic dye, having characteristics such as environmental resistance, light resistance, high molar extinction coefficient, and fluorescence quantum yield. We incorporated it into our target monomer, which can be polymerized without changing its parent structure in a polar solvent and copolymerized with water-soluble monomer to improve the solubility of the dye in an aqueous solution. At the same time, the hydrophobic drug camptothecin (CPT) was designed as a prodrug monomer, and the polymeric nanoparticles (NPs) with NIR fluorescence imaging and prodrug were synthesized in situ in reversible addition-fragmentation chain transfer (RAFT)-mediated aqueous dispersion polymerization. The dynamic light scattering (DLS) and transmission electron microscopy (TEM) revealed the final uniform size of the dual-functional polymeric NPs morphology. The dual-functional polymeric NPs had a strong absorption and emission signal in the NIR region (>650 nm) based on the fluorescence tests. In consideration of the long-term biological toxicity, confocal laser scanning microscopy (CLSM) results indicated that the dual-functional NPs with controlled drug content exhibited effective capability of killing HeLa cells. In addition, in vivo imaging of the dual-functional NPs was observed in real time, and the fluorescent signals clearly demonstrated the dynamic process of prodrug transfer.

20.
Pharm Biol ; 56(1): 209-216, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29540097

ABSTRACT

CONTEXT: Rheumatoid arthritis (RA) is a common systemic auto-immune disease, which is characterized by chronic and symmetry synovial inflammation. Crocin has been reported to exhibit anti-inflammatory effects in animal models. OBJECTIVE: This study investigates the anti-inflammatory and anti-arthritic effects of crocin on type II collagen-induced arthritis (CIA) in Wistar rats. MATERIALS AND METHODS: The CIA rat model was established and randomly divided into five groups with or without crocin treatment (10, 20 or 40 mg/kg), which was started on day 21 after arthritis induction and persisted for 36 days. The symptoms and molecular mechanisms of CIA and crocin-treated CIA rats were compared and investigated. RESULTS: CIA rats presented severe RA symptoms, including high arthritis score, paw swelling, joint inflammation, bone erosion, chondrocyte death, cartilage destruction, enhanced expressions of matrix metalloproteinase (MMP) and pro-inflammatory cytokines. However, crocin could mitigate these symptoms. Crocin (40 mg/kg) exhibited the most efficient therapeutic function on CIA rats: the histological scores of joint inflammation, bone erosion, chondrocyte death, cartilage surface erosion, and bone erosion of CIA rats receiving 40 mg/kg crocin treatment were comparable to the normal rats. MMP-1, -3 and -13 protein expression levels of CIA rats with 40 mg/kg crocin treatment were decreased to levels similar to normal rats. Moreover, crocin could also inhibit the expression of TNF-α, IL-17, IL-6 and CXCL8 in serum and ankle tissues of CIA rats. CONCLUSIONS: In summary, crocin exhibits therapeutic potential for RA, by mitigating the symptoms and inhibiting the pro-inflammatory factor expression.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Arthritis, Experimental/drug therapy , Carotenoids/pharmacology , Collagen Type II , Joints/drug effects , Animals , Arthritis, Experimental/blood , Arthritis, Experimental/chemically induced , Arthritis, Experimental/pathology , Cartilage, Articular/drug effects , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Chondrocytes/drug effects , Chondrocytes/metabolism , Chondrocytes/pathology , Cytokines/blood , Cytokines/genetics , Dose-Response Relationship, Drug , Inflammation Mediators/blood , Joints/metabolism , Joints/pathology , Matrix Metalloproteinases/blood , Rats, Wistar , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...