Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Immunology ; 170(2): 286-300, 2023 10.
Article in English | MEDLINE | ID: mdl-37337447

ABSTRACT

Although various studies have been performed on the function of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) in RA, the results were conflicting. Here we were trying to clarify the role of PMN-MDSCs in the pathogenesis of RA and its specific mechanisms. We detected the frequencies and counts of PMN-MDSCs, TNF-α+ B cells and Ki67+ B cells in spleen and inflamed joints of collagen-induced arthritis (CIA) mice using flow cytometry. The pathological role of PMN-MDSCs was examined by anti-Ly6G neutralizing antibodies against PMN-MDSCs or adoptive transfer of PMN-MDSCs. And the modulation of PMN-MDSCs on B cells was conducted by coculture assays, RNA-Seq, RT-qPCR, and so on. The mechanism of BAFF regulating B cells was verified through western blot and flow cytometry. PMN-MDSCs accumulated in the spleen and joints of CIA mice. PMN-MDSCs depletion could alleviate the arthritis severity, which was accompanied by decreased TNF-α secretion and proliferation of B cells. And its adoptive transfer also facilitated disease progress. Furthermore, PMN-MDSCs from CIA mice had higher expression level of BAFF, which regulated TNF-α expression, proliferation and apoptosis of B cells in vitro. What's more, BAFF promoted phosphorylation of BTK/NF-κB signalling pathway. And Ibrutinib (BTK inhibitor) could reverse the effect of BAFF on TNF-α expression of B cells. Our study suggested that PMN-MDSCs enhanced disease severity of CIA and manipulated TNF-α expression, proliferation and apoptosis of B cells via BAFF, furthermore, BAFF promoted TNF-α expression through BTK/NF-κB signalling pathway, which demonstrated a novel pathogenesis of PMN-MDSCs in CIA.


Subject(s)
Arthritis, Experimental , Myeloid-Derived Suppressor Cells , Mice , Animals , NF-kappa B/metabolism , Myeloid-Derived Suppressor Cells/metabolism , Tumor Necrosis Factor-alpha , Signal Transduction
2.
Clin Exp Rheumatol ; 41(11): 2151-2161, 2023 11.
Article in English | MEDLINE | ID: mdl-36995338

ABSTRACT

OBJECTIVES: Bone erosion in rheumatoid arthritis (RA) is partly caused by excessive activation of osteoclasts. Osteoclasts can be derived from RA synovium and their differentiation can be inhibited by osteoprotegerin (OPG), a decoy receptor of the osteoclastogenesis-promoting cytokine receptor activator of nuclear factor κB ligand (RANKL). Fibroblast-like synoviocytes (FLSs) are the main stromal cells in the synovium that can secret OPG. The OPG secretion of FLSs can be modulated by various cytokines. Interleukin (IL)-13 can alleviate bone erosion in RA mouse models, but the mechanisms remain unclear. Therefore, we aimed to investigate whether IL-13 can induce OPG secretion by RA-FLSs, thus ameliorating bone destruction in RA by inhibiting osteoclast differentiation. METHODS: OPG, RANKL, and IL-13 receptors expression by RA-FLSs were evaluated by RT-qPCR. OPG secretion was determined by ELISA. Western blot was performed to analyse OPG expression and the activation of the STAT6 pathway. IL-13 and (or) OPG siRNA pre-treated RA-FLSs conditioned medium were used in osteoclast induction to test if IL-13 can inhibit osteoclastogenesis by up-regulating OPG in RA-FLSs. Micro-CT and immunofluorescence were performed to determine if IL-13 can induce OPG expression and alleviate bone erosion in vivo. RESULTS: IL-13 can promote OPG expression of RA-FLSs, and the promotion can be overcome by IL-13Rα1 or IL-13Rα2 siRNA transfection, or STAT6 inhibitor. Osteoclast differentiation can be inhibited by IL-13 pre-treated RA-FLSs conditioned medium. The inhibition can be reversed by OPG siRNA transfection. IL-13 injection can increase OPG expression in the joints while reducing bone destruction in collagen-induced arthritis mice. CONCLUSIONS: IL-13 can inhibit osteoclastogenesis by up-regulating OPG in RA-FLSs through IL-13 receptors via the STAT6 pathway, thus may ameliorate bone erosion in RA.


Subject(s)
Arthritis, Rheumatoid , Synoviocytes , Animals , Mice , Synoviocytes/metabolism , Interleukin-13/pharmacology , Interleukin-13/metabolism , Osteoprotegerin/metabolism , Culture Media, Conditioned/metabolism , Arthritis, Rheumatoid/genetics , Osteoclasts/metabolism , Cytokines/metabolism , Fibroblasts/metabolism , Receptors, Interleukin-13/metabolism , RNA, Small Interfering/metabolism , RANK Ligand/genetics , Cells, Cultured
3.
Int Immunopharmacol ; 115: 109625, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36586275

ABSTRACT

Aberrant neutrophil extracellular traps (NETs) are involved in the pathogenesis of rheumatoid arthritis (RA). However, the specific pathway leading to NET formation in RA is poorly understood. Therefore, therapies targeting NETs are not available in RA. In this study, we demonstrated Src homology 2 domain-containing inositol phosphatase-1 (SHIP1) function as a hub to regulate NETosis through SHIP1/ p38 MAPK/TNF-α pathway both in vitro and ex vivo and inhibiting SHIP1 expression ameliorated RA symptoms in vivo. Neutrophils from RA patients showed enhanced NETosis as well as increased SHIP1, p38 mitogen-activated protein kinase (MAPK) family expression and tumor necrosis factor-α (TNF-α) expression. Inhibiting SHIP1 in neutrophils using small molecules counteracted the above-mentioned dysregulations and resulted in decrease in NETosis, p38 expression and TNF-α concentration. Consistent with this, SHIP1 agonist led to upregulated p38MAPK and NET formation. Moreover, inhibiting SHIP1 in vivo led to decreased NETosis and showed beneficial therapeutic effects in Collagen-induced arthritis (CIA) mice. Taken together, these results indicated that activation of SHIP1/MAPK/TNF-α pathway was necessary for upregulated NETosis in RA, which provided evidence for targeting SHIP1 in RA treatment.


Subject(s)
Arthritis, Rheumatoid , Extracellular Traps , Animals , Mice , Arthritis, Rheumatoid/metabolism , Neutrophils , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/genetics , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/metabolism , Tumor Necrosis Factor-alpha/metabolism
4.
Life (Basel) ; 12(5)2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35629290

ABSTRACT

Sleep staging has been widely used as an approach in sleep diagnoses at sleep clinics. Graph neural network (GNN)-based methods have been extensively applied for automatic sleep stage classifications with significant results. However, the existing GNN-based methods rely on a static adjacency matrix to capture the features of the different electroencephalogram (EEG) channels, which cannot grasp the information of each electrode. Meanwhile, these methods ignore the importance of spatiotemporal relations in classifying sleep stages. In this work, we propose a combination of a dynamic and static spatiotemporal graph convolutional network (ST-GCN) with inter-temporal attention blocks to overcome two shortcomings. The proposed method consists of a GCN with a CNN that takes into account the intra-frame dependency of each electrode in the brain region to extract spatial and temporal features separately. In addition, the attention block was used to capture the long-range dependencies between the different electrodes in the brain region, which helps the model to classify the dynamics of each sleep stage more accurately. In our experiments, we used the sleep-EDF and the subgroup III of the ISRUC-SLEEP dataset to compare with the most current methods. The results show that our method performs better in accuracy from 4.6% to 5.3%, in Kappa from 0.06 to 0.07, and in macro-F score from 4.9% to 5.7%. The proposed method has the potential to be an effective tool for improving sleep disorders.

5.
Sensors (Basel) ; 12(5): 5775-90, 2012.
Article in English | MEDLINE | ID: mdl-22778612

ABSTRACT

An ultimate goal for Ubiquitous Computing is to enable people to interact with the surrounding electrical devices using their habitual body gestures as they communicate with each other. The feasibility of such an idea is demonstrated through a wearable gestural device named Magic Ring (MR), which is an original compact wireless sensing mote in a ring shape that can recognize various finger gestures. A scenario of wireless multiple appliances control is selected as a case study to evaluate the usability of such a gestural interface. Experiments comparing the MR and a Remote Controller (RC) were performed to evaluate the usability. From the results, only with 10 minutes practice, the proposed paradigm of gestural-based control can achieve a performance of completing about six tasks per minute, which is in the same level of the RC-based method.

SELECTION OF CITATIONS
SEARCH DETAIL
...