Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.461
Filter
1.
J Psychiatr Res ; 177: 75-81, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38981411

ABSTRACT

Delusion is an important feature of schizophrenia, which may stem from cognitive biases. Working memory (WM) is the core foundation of cognition, closely related to delusion. However, the knowledge of neural mechanisms underlying the relationship between WM and delusion in schizophrenia is poorly investigated. Two hundred and thirty patients with schizophrenia (dataset 1: n = 130; dataset 2: n = 100) were enrolled and scanned for an N-back WM task. We constructed the WM-related whole-brain functional connectome and conducted Connectome-based Predictive Modelling (CPM) to detect the delusion-related networks and built the correlation model in dataset 1. The correlation between identified networks and delusion severity was tested in a separate, heterogeneous sample of dataset 2 that mainly includes early-onset schizophrenia. The identified delusion-related network has a strong correlation with delusion severity measured by the NO.20 item of SAPS in dataset 1 (r = 0.433, p = 2.7 × 10-7, permutation-p = 0.035), and can be validated in the same dataset by using another delusion measurement, that is, the P1 item of PANSS (r = 0.362, p = 0.0005). It can be validated in another independent dataset 2 (NO.20 item of SAPS for r = 0.31, p = 0.0024, P1 item of PANSS for r = 0.27, p = 0.0074). The delusion-related network comprises the connections between the default mode network (DMN), cingulo-opercular network (CON), salience network (SN), subcortical, sensory-somatomotor network (SMN), and visual networks. We successfully established correlation models of individualized delusion based on the WM-related functional connectome and showed a strong correlation between delusion severity and connections within the DMN, CON, SMN, and subcortical network.

2.
BMC Genomics ; 25(1): 673, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38969975

ABSTRACT

BACKGROUND: Culex tritaeniorhynchus is widely distributed in China, from Hainan Island in the south to Heilongjiang in the north, covering tropical, subtropical, and temperate climate zones. Culex tritaeniorhynchus carries 19 types of arboviruses. It is the main vector of the Japanese encephalitis virus (JEV), posing a serious threat to human health. Understanding the effects of environmental factors on Culex tritaeniorhynchus can provide important insights into its population structure or isolation patterns, which is currently unclear. RESULTS: In total, 138 COI haplotypes were detected in the 552 amplified sequences, and the haplotype diversity (Hd) value increased from temperate (0.534) to tropical (0.979) regions. The haplotype phylogeny analysis revealed that the haplotypes were divided into two high-support evolutionary branches. Temperate populations were predominantly distributed in evolutionary branch II, showing some genetic isolation from tropical/subtropical populations and less gene flow between groups. The neutral test results of HNQH (Qionghai) and HNHK(Haikou) populations were negative (P < 0.05), indicating many low-frequency mutations in the populations and that the populations might be in the process of expansion. Moreover, Wolbachia infection was detected only in SDJN (Jining) (2.24%), and all Wolbachia genotypes belonged to supergroup B. To understand the influence of environmental factors on mosquito-borne viruses, we examined the prevalence of Culex tritaeniorhynchus infection in three ecological environments in Shandong Province. We discovered that the incidence of JEV infection was notably greater in Culex tritaeniorhynchus from lotus ponds compared to those from irrigation canal regions. In this study, the overall JEV infection rate was 15.27 per 1000, suggesting the current risk of Japanese encephalitis outbreaks in Shandong Province. CONCLUSIONS: Tropical and subtropical populations of Culex tritaeniorhynchus showed higher genetic diversity and those climatic conditions provide great advantages for the establishment and expansion of Culex tritaeniorhynchus. There are differences in JEV infection rates in wild populations of Culex tritaeniorhynchus under different ecological conditions. Our results suggest a complex interplay of genetic differentiation, population structure, and environmental factors in shaping the dynamics of Culex tritaeniorhynchus. The low prevalence of Wolbachia in wild populations may reflect the recent presence of Wolbachia invasion in Culex tritaeniorhynchus.


Subject(s)
Culex , Haplotypes , Phylogeny , Culex/genetics , Culex/virology , Culex/microbiology , Animals , China , Climate , Genetic Variation , Genetics, Population , Wolbachia/genetics , Mosquito Vectors/genetics , Mosquito Vectors/virology , Mosquito Vectors/microbiology , Electron Transport Complex IV/genetics
3.
Environ Sci Technol ; 58(28): 12633-12642, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38958591

ABSTRACT

As the number of coastal nuclear facilities rapidly increases and the wastewater from the Fukushima Nuclear Plant has been discharged into the Pacific Ocean, the nuclear environmental safety of China's marginal seas is gaining increased attention along with the heightened potential risk of nuclear accidents. However, insufficient work limits our understanding of the impact of human nuclear activities on the Yellow Sea (YS) and the assessment of their environmental process. This study first reports the 129I and 127I records of posthuman nuclear activities in the two YS sediments. Source identification of anthropogenic 129I reveals that, in addition to the gaseous 129I release and re-emission of oceanic 129I discharged from the European Nuclear Fuel Reprocessing Plants (NFRPs), the Chinese nuclear weapons testing fallout along with the global fallout is an additional 129I input for the continental shelf of the YS. The 129I/127I atomic ratios in the North YS (NYS) sediment are significantly higher than those in the other adjacent coastal areas, attributed to the significant riverine input of particulate 129I by the Yellow River. Furthermore, we found a remarkable 129I latitudinal disparity in the sediments than those in the seawaters in the various China seas, revealing that sediments in China's marginal seas already received a huge anthropogenic 129I from terrigenous sources via rivers and thus became a significant sink of anthropogenic 129I. This study broadens an insight into the potential impacts of terrigenous anthropogenic pollution on the Chinese coastal marine radioactive ecosystem.


Subject(s)
Geologic Sediments , Radiation Monitoring , Rivers , Geologic Sediments/chemistry , Rivers/chemistry , China , Water Pollutants, Radioactive/analysis , Oceans and Seas , Humans , Iodine Radioisotopes/analysis
4.
J Biomater Sci Polym Ed ; : 1-19, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38994903

ABSTRACT

Cartilage tissue engineering holds great promise for efficient cartilage regeneration. However, early inflammatory reactions to seed cells and/or scaffolds impede this process. Consequently, managing inflammation is of paramount importance. Moreover, due to the body's restricted chondrogenic capacity, inducing cartilage regeneration becomes imperative. Thus, a controlled platform is essential to establish an anti-inflammatory microenvironment before initiating the cartilage regeneration process. In this study, we utilized fifth-generation polyamidoamine dendrimers (G5) as a vehicle for drugs to create composite nanoparticles known as G5-Dic/Sr. These nanoparticles were generated by surface modification with diclofenac (Dic), known for its potent anti-inflammatory effects, and encapsulating strontium (Sr), which effectively induces chondrogenesis, within the core. Our findings indicated that the G5-Dic/Sr nanoparticle exhibited selective Dic release during the initial 9 days and gradual Sr release from days 3 to 15. Subsequently, these nanoparticles were incorporated into a gelatin methacryloyl (GelMA) hydrogel, resulting in GelMA@G5-Dic/Sr. In vitro assessments demonstrated GelMA@G5-Dic/Sr's biocompatibility with bone marrow stem cells (BMSCs). The enclosed nanoparticles effectively mitigated inflammation in lipopolysaccharide-induced RAW264.7 macrophages and significantly augmented chondrogenesis in BMSCs cocultures. Implanting BMSCs-loaded GelMA@G5-Dic/Sr hydrogels in immunocompetent rabbits for 2 and 6 weeks revealed diminished inflammation and enhanced cartilage formation compared to GelMA, GelMA@G5, GelMA@G5-Dic, and GelMA@G5/Sr hydrogels. Collectively, this study introduces an innovative strategy to advance cartilage regeneration by temporally modulating inflammation and chondrogenesis in immunocompetent animals. Through the development of a platform addressing the temporal modulation of inflammation and the limited chondrogenic capacity, we offer valuable insights to the field of cartilage tissue engineering.

5.
Chempluschem ; : e202400364, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38978154

ABSTRACT

Nuclear energy is a competitive and environmentally friendly low-carbon energy source. It is seen as an important avenue for satisfying energy demands, responding to the energy crisis, and mitigating global climate change. However, much attention has been paid to achieving the effective treatment of radionuclide oxoanions produced in nuclear waste. Initially, advanced adsorbents were mainly available in powder form, which meant that additional purification processes were usually required for separation and recovery in industrial applications. Therefore, to meet the practical requirements of industrial applications, materials need to be molded and processed into forms such as beads, membranes, gels, and resins. Here, we summarize the fabrication of porous materials used for capturing typical radionuclide oxoanions, including UO22+, TcO4-, IO3-, SeO32-, and SeO4-.

6.
Front Microbiol ; 15: 1413532, 2024.
Article in English | MEDLINE | ID: mdl-39021627

ABSTRACT

Introduction: Echinococcosis is a chronic zoonotic disease caused by tapeworms of the genus Echinococcus. The World Health Organization (WHO) has identified encapsulated disease as one of 17 neglected diseases to be controlled or eliminated by 2050. There is no accurate, early, non-invasive molecular diagnostic method to detect echinococcosis. The feasibility of circulating free DNA as a diagnostic method for echinococcosis has yielded inconclusive results in a number of published studies. However, there has been no systematic evaluation to date assessing the overall performance of these assays. We report here the first meta-analysis assessing the diagnostic accuracy of cfDNA in plasma, serum, and urine for echinococcosis. Methods: We systematically searched PubMed, Embase, Cochrane Library, China National Knowledge Infrastructure (CNKI), and WeiPu databases up to 17 January 2024, for relevant studies. All analyses were performed using RevMan 5.3, Meta-DiSc 1.4, Stata 17.0, and R 4.3.1 software. The sensitivity, specificity, and other accuracy indicators of circulating free DNA for the diagnosis of echinococcosis were summarized. Subgroup analyses and meta-regression were performed to identify sources of heterogeneity. Results: A total of 7 studies included 218 patients with echinococcosis and 214 controls (156 healthy controls, 32 other disease controls (non-hydatid patients), and 26 non-study-targeted echinococcosis controls were included). Summary estimates of the diagnostic accuracy of cfDNA in the diagnosis of echinococcosis were as follows: sensitivity (SEN) of 0.51 (95% CI: 0.45-0.56); specificity (SPE) of 0.99 (95% CI: 0.97-0.99); positive likelihood ratio (PLR) of 11.82 (95% CI: 6.74-20.74); negative likelihood ratio (NLR) of 0.57 (95% CI: 0.41-0.80); diagnostic ratio (DOR) of 36.63 (95% CI: 13.75-97.59); and area under the curve (AUC) value of 0.98 (95% CI: 0.96-1.00). Conclusion: Existing evidence indicates that the combined specificity of circulating cfDNA for echinococcosis is high. However, the combined sensitivity performance is unsatisfactory due to significant inter-study heterogeneity. To strengthen the validity and accuracy of our findings, further large-scale prospective studies are required.Systematic review registrationThe systematic review was registered in the International Prospective Register of Systematic Reviews PROSPERO [CRD42023454158]. https://www.crd.york.ac.uk/PROSPERO/.

7.
Cell Res ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38969803

ABSTRACT

Mutations in amino acid sequences can provoke changes in protein function. Accurate and unsupervised prediction of mutation effects is critical in biotechnology and biomedicine, but remains a fundamental challenge. To resolve this challenge, here we present Protein Mutational Effect Predictor (ProMEP), a general and multiple sequence alignment-free method that enables zero-shot prediction of mutation effects. A multimodal deep representation learning model embedded in ProMEP was developed to comprehensively learn both sequence and structure contexts from ~160 million proteins. ProMEP achieves state-of-the-art performance in mutational effect prediction and accomplishes a tremendous improvement in speed, enabling efficient and intelligent protein engineering. Specifically, ProMEP accurately forecasts mutational consequences on the gene-editing enzymes TnpB and TadA, and successfully guides the development of high-performance gene-editing tools with their engineered variants. The gene-editing efficiency of a 5-site mutant of TnpB reaches up to 74.04% (vs 24.66% for the wild type); and the base editing tool developed on the basis of a TadA 15-site mutant (in addition to the A106V/D108N double mutation that renders deoxyadenosine deaminase activity to TadA) exhibits an A-to-G conversion frequency of up to 77.27% (vs 69.80% for ABE8e, a previous TadA-based adenine base editor) with significantly reduced bystander and off-target effects compared to ABE8e. ProMEP not only showcases superior performance in predicting mutational effects on proteins but also demonstrates a great capability to guide protein engineering. Therefore, ProMEP enables efficient exploration of the gigantic protein space and facilitates practical design of proteins, thereby advancing studies in biomedicine and synthetic biology.

8.
Brain Behav Immun ; 120: 181-186, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38825049

ABSTRACT

BACKGROUND: The pathogenicity of NR1-IgGs in N-methyl-D-aspartate receptor (NMDAR)-antibody encephalitis is known, but the immunobiological mechanisms underlying their production remain unclear. METHODS: For the first time, we explore the origin of NR1-IgGs and evaluate the contribution of B-cells to serum NR1-IgGs levels. Peripheral blood mononuclear cells (PBMCs) were obtained from patients and healthy controls (HCs). Naïve, unswitched memory (USM), switched memory B cells (SM), antibody-secreting cells (ASCs), and PBMC depleted of ASCs were obtained by fluorescence-activated cell sorting and cultured in vitro. RESULTS: For some patients, PBMCs spontaneously produced NR1-IgGs. Compared to the patients in PBMC negative group, the positive group had higher NR1-IgG titers in cerebrospinal fluid and Modified Rankin scale scores. The proportions of NR1-IgG positive wells in PBMCs cultures were correlated with NR1-IgGs titers in serum and CSF. The purified ASCs, SM, USM B cells produced NR1-IgGs in vitro. Compared to the patients in ASCs negative group, the positive group exhibited a worse response to second-line IT at 3-month follow-up. Naïve B cells also produce NR1-IgGs, implicating that NR1-IgGs originate from naïve B cells and a pre-germinal centres defect in B cell tolerance checkpoint in some patients. For HCs, no NR1-IgG from cultures was observed. PBMC depleted of ASCs almost eliminated the production of NR1-IgGs. CONCLUSIONS: These collective findings suggested that ASCs might mainly contribute to the production of peripheral NR1-IgG in patients with NMDAR-antibody encephalitis in the acute phase. Our study reveals the pathogenesis and helps develop tailored treatments (eg, anti-CD38) for NMDAR-antibody encephalitis.

9.
Beilstein J Nanotechnol ; 15: 694-703, 2024.
Article in English | MEDLINE | ID: mdl-38919165

ABSTRACT

Multifrequency atomic force microscopy (AFM) utilizes the multimode operation of cantilevers to achieve rapid high-resolution imaging and extract multiple properties. However, the higher-order modal response of traditional rectangular cantilever is weaker in air, which affects the sensitivity of multifrequency AFM detection. To address this issue, we previously proposed a bridge/cantilever coupled system model to enhance the higher-order modal response of the cantilever. This model is simpler and less costly than other enhancement methods, making it easier to be widely used. However, previous studies were limited to theoretical analysis and preliminary simulations regarding ideal conditions. In this paper, we undertake a more comprehensive investigation of the coupled system, taking into account the influence of probe and excitation surface sizes on the modal response. To facilitate the exploration of the effectiveness and optimal conditions for the coupled system in practical applications, a macroscale experimental platform is established. By conducting finite element analysis and experiments, we compare the performance of the coupled system with that of traditional cantilevers and quantify the enhancement in higher-order modal response. Also, the optimal conditions for the enhancement of macroscale cantilever modal response are explored. Additionally, we also supplement the characteristics of this model, including increasing the modal frequency of the original cantilever and generating additional resonance peaks, demonstrating the significant potential of the coupled system in various fields of AFM.

10.
Ann Hematol ; 103(7): 2273-2281, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38842566

ABSTRACT

While studies have explored the feasibility of switching between various thrombopoietin receptor agonists in treating immune thrombocytopenia (ITP), data on the switching from eltrombopag to hetrombopag remains scarce. This post-hoc analysis of a phase III hetrombopag trial aimed to assess the outcomes of ITP patients who switched from eltrombopag to hetrombopag. In the original phase III trial, patients initially randomized to the placebo group were switched to eltrombopag. Those who completed this 14-week eltrombopag were eligible to switch to a 24-week hetrombopag. Treatment response, defined as a platelet count of ≥ 50 × 109/L, and safety were evaluated before and after the switch. Sixty-three patients who completed the 14-week eltrombopag and switched to hetrombopag were included in this post-hoc analysis. Response rates before and after the switch were 66.7% and 88.9%, respectively. Among those with pre-switching platelet counts below 30 × 109/L, eight out of 12 patients (66.7%) responded, while eight out of nine patients (88.9%) with pre-switching platelet counts between 30 × 109/L and 50 × 109/L responded post-switching. Treatment-related adverse events were observed in 50.8% of patients during eltrombopag treatment and 38.1% during hetrombopag treatment. No severe adverse events were noted during hetrombopag treatment. Switching from eltrombopag to hetrombopag in ITP management appears to be effective and well-tolerated. Notably, hetrombopag yielded high response rates, even among patients who had previously shown limited response to eltrombopag. However, these observations need to be confirmed in future trials.


Subject(s)
Benzoates , Hydrazines , Purpura, Thrombocytopenic, Idiopathic , Pyrazoles , Pyrazolones , Receptors, Thrombopoietin , Humans , Pyrazoles/therapeutic use , Pyrazoles/adverse effects , Pyrazoles/administration & dosage , Male , Female , Benzoates/therapeutic use , Benzoates/adverse effects , Benzoates/administration & dosage , Purpura, Thrombocytopenic, Idiopathic/drug therapy , Purpura, Thrombocytopenic, Idiopathic/blood , Middle Aged , Adult , Aged , Hydrazines/therapeutic use , Hydrazines/adverse effects , Hydrazines/administration & dosage , Receptors, Thrombopoietin/agonists , Pyrazolones/therapeutic use , Drug Substitution , Platelet Count , Treatment Outcome , Hydrazones
11.
Biomed Pharmacother ; 177: 117014, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38908195

ABSTRACT

This study examines the involvement of TRIM59 in silica-induced pulmonary fibrosis and explores the therapeutic efficacy of Tanshinone IIA (Tan IIA). In vivo experiments conducted on rats with silica-induced pulmonary fibrosis unveiled an increase in TRIM59 levels and a decrease in PPM1A levels. Subsequent investigations using in vitro silicosis cell models demonstrated that modulation of TRIM59 expression significantly impacts silicosis fibrosis, influencing the levels of PPM1A and activation of the Smad2/3 signaling pathway. Immunofluorescence and co-immunoprecipitation assays confirmed the interaction between TRIM59 and PPM1A in fibroblasts, wherein TRIM59 facilitated the degradation of PPM1A protein via proteasomal and ubiquitin-mediated pathways. Furthermore, employing a rat model of silica-induced pulmonary fibrosis, Tan IIA exhibited efficacy in mitigating lung tissue damage and fibrosis. Immunohistochemical analysis validated the upregulation of TRIM59 and downregulation of PPM1A in silica-induced pulmonary fibrosis, which Tan IIA alleviated. In vitro studies elucidated the mechanism by which Tan IIA regulates the Smad2/3 signaling pathway through TRIM59-mediated modulation of PPM1A. Treatment with Tan IIA in silica-induced fibrosis cell models resulted in concentration-dependent reductions in fibrotic markers and attenuation of relevant protein expressions. Tan IIA intervention in silica-induced fibrosis cell models mitigated the TRIM59-induced upregulation of fibrotic markers and enhanced PPM1A expression, thereby partially reversing Smad2/3 activation. Overall, the findings indicate that while overexpression of TRIM59 may activate the Smads pathway by suppressing PPM1A expression, treatment with Tan IIA holds promise in counteracting these effects by inhibiting TRIM59 expression.

12.
Phytopathology ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831556

ABSTRACT

Fusarium head blight (FHB) caused by Fusarium graminearum is a significant pathogen affecting wheat crops. During the infection process, effector proteins are secreted to modulate plant immunity and promote infection. The toxin deoxynivalenol (DON) is produced in infected wheat grains, posing a threat to human and animal health. Serine carboxypeptidases (SCPs) belong to the α/ß hydrolase family of proteases and are widely distributed in plant and fungal vacuoles as well as animal lysosomes. Research on SCPs mainly focuses on the isolation, purification of a small number of fungi as well as their study in plants.However, their functions in F. graminearum, a fungal pathogen, remain relatively unknown. In this study, the biological functions of the FgSCP gene in F. graminearum were investigated. The study revealed that mutations in FgSCP affected nutritional growth, sexual reproduction, and stress tolerance of F. graminearum. Furthermore, the deletion of FgSCP resulted in reduced pathogenicity and hindered the biosynthesis of DON. The upregulation of FgSCP expression three days after infection indicated its involvement in host invasion, possibly acting as a "smokescreen" to deceive the host and suppress the expression of host defensive genes. Subsequently, we confirmed the secretion ability of FgSCP and its ability to inhibit the cell death induced by INF1 in Nicotiana. benthamiana cells, indicating its potential role as an effector protein in suppressing plant immune responses and promoting infection. In summary, we have identified FgSCP as an essential effector protein in F. graminearum, playing critical roles in growth, virulence, secondary metabolism, and host invasion.

13.
Lancet Haematol ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38885672

ABSTRACT

BACKGROUND: Sovleplenib, a novel spleen tyrosine kinase (SYK) inhibitor, showed promising safety and activity in patients with primary immune thrombocytopenia in a phase 1b/2 trial. We aimed to evaluate the efficacy and safety of sovleplenib in patients with chronic primary immune thrombocytopenia. METHODS: This randomised, double-blind, placebo-controlled, phase 3 trial (ESLIM-01) was done in 34 clinical centres in China. Eligible patients, aged 18-75 years, had chronic primary immune thrombocytopenia, an Eastern Cooperative Oncology Group (ECOG) performance status of 0-1, and received one or more previous treatments. Patients were randomly assigned (2:1) to receive oral sovleplenib or placebo, 300 mg once daily, for 24 weeks. Randomisation was stratified by baseline platelet counts, previous splenectomy, and concomitant treatment for anti-immune thrombocytopenia at baseline. The primary endpoint was durable response rate (proportion of patients with a platelet count of ≥50 × 109/L on at least four of six scheduled visits between weeks 14 and 24, not affected by rescue treatment) assessed by intention-to-treat. The trial is registered with ClinicalTrials.gov, NCT05029635, and the extension, open-label phase is ongoing. FINDINGS: Between Sept 29, 2021, and Dec 31, 2022, 188 patients were randomly assigned to receive sovleplenib (n=126) or placebo (n=62). 124 (66%) were female, 64 (34%) were male, and all were of Asian ethnicity. Median previous lines of immune thrombocytopenia therapy were 4·0, and 134 (71%) of 188 patients had received previous thrombopoietin or thrombopoietin receptor agonist. The primary endpoint was met; durable response rate was 48% (61/126) with sovleplenib compared with zero with placebo (difference 48% [95% CI 40-57]; p<0·0001). The median time to response was 8 days with sovleplenib compared with 30 days with placebo. 125 (99%) of 126 patients in the sovleplenib group and 53 (85%) of 62 in the placebo group reported treatment-emergent adverse events (TEAEs), and most events were mild or moderate. Frequent TEAEs of grade 3 or higher for sovleplenib versus placebo were platelet count decreased (7% [9/126] vs 10% [6/62]), neutrophil count decreased (3% [4/126] vs 0% [0/62]), and hypertension (3% [4/126] vs 0% [0/62]). Incidences of serious TEAEs were 21% (26/126) in the sovleplenib group and 18% (11/62) in the placebo group. There were no deaths in the study. INTERPRETATION: Sovleplenib showed a clinically meaningful sustained platelet response in patients with chronic primary immune thrombocytopenia, with a tolerable safety profile and improvement in quality of life. Sovleplenib could be a potential treatment option for patients with immune thrombocytopenia who received one or more previous therapy. FUNDING: HUTCHMED and Science and Technology Commission of Shanghai Municipality.

14.
Chemphyschem ; : e202400396, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38889310

ABSTRACT

The pursuit of molecule-based magnetic memory materials contributes significantly to high-density information storage research in the frame of the ongoing information technologies revolution. Remarkable progress has been achieved in both transition metal (TM) and lanthanide based single-molecule magnets (SMMs). Notably, six-coordinated CoII SMMs hold particular research significance owing to the economic and abundant nature of 3d TM ions compared to lanthanide ions, the substantial spin-orbit coupling of CoII ions, the potential for precise control over coordination geometry, and the air-stability of coordination-saturated structures. In this review, we will summarize the progress made in six-coordinated CoII SMMs, organized by their coordination geometry and molecular structure similarity. Valuable insights, principles, and new mechanism gleaned from this research and remaining issues that need to be addressed will also be discussed to guide future optimization.

15.
Inorg Chem ; 63(24): 11459-11469, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38842950

ABSTRACT

The performance of covalent-organic frameworks (COFs) for the photocatalytic extraction of uranium is greatly limited by the number of adsorption sites. Herein, inspired by electronegative redox reactions, we designed a nitrogen-oxygen rich pyrazine connected COF (TQY-COF) with multiple redox sites as a platform for extracting uranium via combining superaffinity and enhanced photoinduction. The preorganized bisnitrogen-bisoxygen donor configuration on TQY-COF is entirely matched with the typical geometric coordination of hexavalent uranyl ions, which demonstrates high affinity (tetra-coordination). In addition, the presence of the carbonyl group and pyrazine ring effectively stores and controls electron flow, which efficaciously facilitates the separation of e-/h+ and enhances photocatalytic performance. The experimental results show that TQY-COF removes up to 99.8% of uranyl ions from actual uranium mine wastewater under the light conditions without a sacrificial agent, and the separation coefficient reaches 1.73 × 106 mL g-1 in the presence of multiple metal ions, which realizes the precise separation in the complex environment. Importantly, DFT calculations further elucidate the coordination mechanism of uranium and demonstrate the necessity of the presence of N/O atoms in the photocatalytic adsorption of uranium.

16.
Ther Adv Med Oncol ; 16: 17588359241260985, 2024.
Article in English | MEDLINE | ID: mdl-38882443

ABSTRACT

Background: Chemotherapy-induced thrombocytopenia (CIT) increases the risk of bleeding, necessitates chemotherapy dose reductions and delays, and negatively impacts prognosis. Objectives: This study aimed to evaluate the efficacy and safety of hetrombopag for the management of CIT in patients with advanced solid tumors. Design: A multicenter, randomized, double-blind, placebo-controlled, phase II study. Methods: Patients with advanced solid tumors who experienced a chemotherapy delay of ⩾7 days due to thrombocytopenia (platelet count <75 × 109/L) were randomly assigned (1:1) to receive oral hetrombopag at an initial dose of 7.5 mg once daily or a matching placebo. The primary endpoint was the proportion of treatment responders, defined as patients resuming chemotherapy within 14 days (platelet count ⩾100 × 109/L) and not requiring a chemotherapy dose reduction of ⩾15% or a delay of ⩾4 days or rescue therapy for two consecutive cycles. Results: Between 9 October 2021 and 5 May 2022, 60 patients were randomized, with 59 receiving ⩾1 dose of assigned treatment (hetrombopag/placebo arm, n = 28/31). The proportion of treatment responders was significantly higher in the hetrombopag arm than in the placebo arm [60.7% (17/28) versus 12.9% (4/31); difference of proportion: 47.6% (95% confidence interval (CI): 26.0-69.3); odds ratio = 10.44 (95% CI: 2.82-38.65); p value (nominal) based on the Cochran-Mantel-Haenszel: <0.001)]. During the double-blind treatment period, grade 3 or higher adverse events (AEs) occurred in 35.7% (10/28) of patients with hetrombopag and 38.7% (12/31) of patients on placebo. The most common grade 3 or higher AEs were decreased neutrophil count [35.7% (10/28) versus 35.5% (11/31)] and decreased white blood cell count [17.9% (5/28) versus 19.4% (6/31)]. Serious AEs were reported in 3.6% (1/28) of patients with hetrombopag and 9.7% (3/31) of patients with placebo. Conclusion: Hetrombopag is an effective and well-tolerated alternative for managing CIT in patients with solid tumors. Trial registration: ClinicalTrials.gov identifier: NCT03976882.

17.
Int Heart J ; 65(3): 506-516, 2024.
Article in English | MEDLINE | ID: mdl-38825495

ABSTRACT

Hydrogen sulfide (H2S) has been identified as a novel gasotransmitter and a substantial antioxidant that can activate various cellular targets to regulate physiological and pathological processes in mammals. However, under physiological conditions, it remains unclear whether it is involved in regulating cardiomyocyte (CM) proliferation during postnatal development in mice. This study mainly aimed to evaluate the role of H2S in postnatal CM proliferation and its regulating molecular mechanisms. We found that sodium hydrosulfide (NaHS, the most widely used H2S donor, 50-200 µM) increased neonatal mouse primary CM proliferation in a dose-dependent manner in vitro. Consistently, exogenous administration of H2S also promoted CM proliferation and increased the total number of CMs at postnatal 7 and 14 days in vivo. Moreover, we observed that the protein expression of SIRT1 was significantly upregulated after NaHS treatment. Inhibition of SIRT1 with EX-527 or si-SIRT1 decreased CM proliferation, while enhancement of the activation of SIRT1 with SRT1720 promoted CM proliferation. Meanwhile, pharmacological and genetic blocking of SIRT1 repressed the effect of NaHS on CM proliferation. Taken together, these results reveal that H2S plays a promotional role in proliferation of CMs in vivo and in vitro and SIRT1 is required for H2S-mediated CM proliferation, which indicates that H2S may be a potential modulator for heart development in postnatal time window.


Subject(s)
Cell Proliferation , Hydrogen Sulfide , Myocytes, Cardiac , Signal Transduction , Sirtuin 1 , Up-Regulation , Animals , Sirtuin 1/metabolism , Hydrogen Sulfide/pharmacology , Hydrogen Sulfide/metabolism , Cell Proliferation/drug effects , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Mice , Signal Transduction/drug effects , Animals, Newborn , Cells, Cultured , Mice, Inbred C57BL , Sulfides
18.
Asian J Psychiatr ; 97: 104077, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38781692

ABSTRACT

BACKGROUND: Working memory (WM) and attention are essential cognitive processes, and their interplay is critical for efficient information processing. Schizophrenia often exhibits deficits in both WM and attention, contributing to function impairments. This study aims to investigate the neural mechanisms underlying the relationship between WM impairments and attention deficits in schizophrenia. METHODS: We assessed the functional-MRI scans of the 184 schizophrenias with different attention deficits (mild=133; severe=51) and 146 controls during an N-back WM task. We explored their whole-brain functional connectome profile by adopting the voxel-wise degree centrality (DC). Linear analysis was conducted to explore the associations among attention deficit severity, altered DC, and WM performance in patients. RESULTS: We observed that all patients showed decreased DC in the pre-supplementary area (pre-SMA), and posterior cerebellum compared to the controls, and schizophrenia patients with mild attention deficits showed decreased DC in the supramarginal gyrus, insula, and precuneus compared with the other 2 groups. DC values of the detected brain regions displayed U-shaped or inverted U-shaped curves, rather than a linear pattern, in response to increasing attention deficits. The linear analysis indicated that altered DC of the pre-SMA can modulate the relationship between attention deficits and WM performance. CONCLUSION: The U-shaped or inverted U-shaped pattern in response to increasing attention deficits may reflect a compensation mechanism in schizophrenia with mild attention deficits. This notion is also supported by the linear analysis that schizophrenia patients with mild attention deficits can improve their WM performance by increasing the DC value of the pre-SMA.


Subject(s)
Connectome , Magnetic Resonance Imaging , Memory, Short-Term , Schizophrenia , Humans , Memory, Short-Term/physiology , Schizophrenia/physiopathology , Schizophrenia/diagnostic imaging , Schizophrenia/complications , Adult , Male , Female , Attention/physiology , Young Adult , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/etiology
19.
Food Funct ; 15(11): 5972-5986, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38739010

ABSTRACT

Since oxidative stress is often associated with neurodegenerative diseases, antioxidants are likely to confer protection against neurodegeneration. Despite an increasing number of food-derived peptides being identified as antioxidants, their antineurodegenerative potentials remain largely unexplored. Here, a sea cucumber peptide preparation - the peptide-rich fraction of <3 kDa (UF<3K) obtained by ultrafiltration from Apostichopus japonicus protein hydrolyzate - was found to protect PC12 cells and Caenorhabditis elegans from neurodegeneration by reducing oxidative stress and apoptosis, demonstrating its in vitro and in vivo neuroprotective effects. As many food-originated peptides are cryptides (cryptic peptides - short amino acid sequences encrypted in parent proteins) released in quantities by protein hydrolysis, UF<3K was subjected to sequencing analysis. As expected, a large repertoire of peptides were identified in UF<3K, establishing a sea cucumber cryptome (1238 peptides in total). Then 134 peptides were randomly selected from the cryptome (>10%) and analyzed for their antioxidant activities using a number of in silico bioinformatic programs as well as in vivo experimental assays in C. elegans. From these results, a novel antioxidant peptide - HoloPep#362 (FETLMPLWGNK) - was shown to not only inhibit aggregation of neurodegeneration-associated polygluatmine proteins but also ameliorate behavioral deficits in proteotoxicity nematodes. Proteomic analysis revealed an increased expression of several lysosomal proteases by HoloPep#362, suggesting proteostasis maintenance as a mechanism for its antineurodegenerative action. These findings provide an insight into the health-promoting potential of sea cucumber peptides as neuroprotective nutraceuticals and also into the importance of training in silico peptide bioactivity prediction programs with in vivo experimental data.


Subject(s)
Antioxidants , Caenorhabditis elegans , Neuroprotective Agents , Oxidative Stress , Peptides , Sea Cucumbers , Animals , Caenorhabditis elegans/drug effects , Antioxidants/pharmacology , Antioxidants/chemistry , Peptides/pharmacology , Peptides/chemistry , Sea Cucumbers/chemistry , Oxidative Stress/drug effects , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , PC12 Cells , Rats , Neurodegenerative Diseases/drug therapy , Computer Simulation
20.
BMC Psychol ; 12(1): 252, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715133

ABSTRACT

BACKGROUND: The COVID-19 pandemic has prompted a rapid shift to online teaching, placing unprecedented demands on educators' physical and mental well-being. However, the relationship between English as a Foreign Language (EFL) teachers' physical activity, emotion regulation, and competence for online teaching remains underexplored. OBJECTIVES: This study aimed to investigate the interplay between EFL teachers' physical activity, emotion regulation strategies, and competence for online teaching. RESULTS: Structural equation modeling revealed significant direct and indirect effects, indicating that physical activity positively influences emotion regulation, which, in turn, enhances teachers' competence for online instruction. Furthermore, emotion regulation was found to mediate the relationship between physical activity and online teaching competence. CONCLUSIONS: These findings underscore the importance of promoting physical activity among EFL teachers as a means to enhance their emotion regulation skills and competence for online teaching, particularly in the context of the COVID-19 pandemic. IMPLICATIONS: The study highlights the need for targeted interventions aimed at supporting EFL teachers' well-being and professional development, with implications for educational policies, teacher training programs, and institutional support structures in the digital learning landscape.


Subject(s)
COVID-19 , Education, Distance , Emotional Regulation , Exercise , Humans , Male , Female , Adult , COVID-19/psychology , Exercise/psychology , Professional Competence , Models, Structural , Multilingualism , School Teachers/psychology , Middle Aged , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...