Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-428353

ABSTRACT

The emergence of SARS-CoV-2 variants poses greater challenges to the control of COVID-19 pandemic. Here, we parallelly investigated three important characteristics of seven SARS-CoV-2 variants, including two mink-associated variants, the B.1.617.1 variant, and the four WHO-designated variants of concerns (B.1.1.7, B.1.351, P.1, and B.1.617.2). We first investigated the ability of these variants to bind and use animal ACE2 orthologs as entry receptor. We found that, in contrast to a prototype variant, the B.1.1.7, B.1.351, and P.1 variants had significantly enhanced affinities to cattle, pig, and mouse ACE2 proteins, suggesting increased susceptibility of these species to these SARS-CoV-2 variants. We then evaluated in vitro neutralization sensitivity of these variants to four monoclonal antibodies in clinical use. We observed that all the variants were partially or completely resistant against at least one of the four tested antibodies, with B.1.351 and P.1 showing significant resistance to three of them. As ACE2-Ig is a broad-spectrum anti-SARS-CoV-2 drug candidate, we then evaluated in vitro neutralization sensitivity of these variants to eight ACE2-Ig constructs previously described in three different studies. All the SARS-CoV-2 variants were efficiently neutralized by these ACE2-Ig constructs. Interestingly, compared to the prototype variant, most tested variants including the variants of concern B.1.1.7, B.1.351, P.1, and B.1.617.2 showed significantly increased (up to [~]15-fold) neutralization sensitivity to ACE2-Ig constructs that are not heavily mutated in the spike-binding interface of the soluble ACE2 domain, suggesting that SARS-CoV-2 evolves toward better utilizing ACE2, and that ACE2-Ig is an attractive drug candidate for coping with SARS-CoV-2 mutations.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-032342

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a currently uncontrolled pandemic and the etiological agent of coronavirus disease 2019 (COVID-19). It is important to study the host range of SARS-CoV-2 because some domestic species might harbor the virus and transmit it back to humans. In addition, insight into the ability of SARS-CoV-2 and SARS-like viruses to utilize animal orthologs of the SARS-CoV-2 receptor ACE2 might provide structural insight into improving ACE2-based viral entry inhibitors. Here we show that ACE2 orthologs of a wide range of domestic and wild animals support entry of SARS-CoV-2, as well as that of SARS-CoV-1, bat coronavirus RaTG13, and a coronavirus isolated from pangolins. Some of these species, including camels, cattle, horses, goats, sheep, pigs, cats, and rabbits may serve as potential intermediate hosts for new human transmission, and rabbits in particular may serve as a useful experimental model of COVID-19. We show that SARS-CoV-2 and SARS-CoV-1 entry could be potently blocked by recombinant IgG Fc-fusion proteins of viral spike protein receptor-binding domains (RBD-Fc) and soluble ACE2 (ACE2-Fc). Moreover, an ACE2-Fc variant, which carries a D30E mutation and has ACE2 truncated at its residue 740 but not 615, outperforms all the other ACE2-Fc variants on blocking entry of both viruses. Our data suggest that RBD-Fc and ACE2-Fc could be used to treat and prevent infection of SARS-CoV-2 and any new viral variants that emerge over the course of the pandemic.

SELECTION OF CITATIONS
SEARCH DETAIL
...