Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Discov ; 4(11): 1290-8, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25182153

ABSTRACT

UNLABELLED: Through unbiased metabolomics, we identified elevations of the metabolite 2-hydroxyglutarate (2HG) in renal cell carcinoma (RCC). 2HG can inhibit 2-oxoglutaratre (2-OG)-dependent dioxygenases that mediate epigenetic events, including DNA and histone demethylation. 2HG accumulation, specifically the d enantiomer, can result from gain-of-function mutations of isocitrate dehydrogenase (IDH1, IDH2) found in several different tumors. In contrast, kidney tumors demonstrate elevations of the l enantiomer of 2HG (l-2HG). High-2HG tumors demonstrate reduced DNA levels of 5-hydroxymethylcytosine (5hmC), consistent with 2HG-mediated inhibition of ten-eleven translocation (TET) enzymes, which convert 5-methylcytosine (5mC) to 5hmC. l-2HG elevation is mediated in part by reduced expression of l-2HG dehydrogenase (L2HGDH). L2HGDH reconstitution in RCC cells lowers l-2HG and promotes 5hmC accumulation. In addition, L2HGDH expression in RCC cells reduces histone methylation and suppresses in vitro tumor phenotypes. Our report identifies l-2HG as an epigenetic modifier and putative oncometabolite in kidney cancer. SIGNIFICANCE: Here, we report elevations of the putative oncometabolite l-2HG in the most common subtype of kidney cancer and describe a novel mechanism for the regulation of DNA 5hmC levels. Our findings provide new insight into the metabolic basis for the epigenetic landscape of renal cancer.


Subject(s)
Carcinoma, Renal Cell/metabolism , Glutarates/metabolism , Kidney Neoplasms/metabolism , Carcinoma, Renal Cell/genetics , Cell Line, Tumor , Epigenesis, Genetic , HEK293 Cells , Humans , Kidney Neoplasms/genetics , RNA, Messenger/metabolism
2.
PLoS One ; 8(4): e60478, 2013.
Article in English | MEDLINE | ID: mdl-23593225

ABSTRACT

Nonsense suppression therapy is an approach to treat genetic diseases caused by nonsense mutations. This therapeutic strategy pharmacologically suppresses translation termination at Premature Termination Codons (PTCs) in order to restore expression of functional protein. However, the process of Nonsense-Mediated mRNA Decay (NMD), which reduces the abundance of mRNAs containing PTCs, frequently limits this approach. Here, we used a mouse model of the lysosomal storage disease mucopolysaccharidosis I-Hurler (MPS I-H) that carries a PTC in the Idua locus to test whether NMD attenuation can enhance PTC suppression in vivo. Idua encodes alpha-L-iduronidase, an enzyme required for degradation of the glycosaminoglycans (GAGs) heparan sulfate and dermatan sulfate. We found that the NMD attenuator NMDI-1 increased the abundance of the PTC-containing Idua transcript. Furthermore, co-administration of NMDI-1 with the PTC suppression drug gentamicin enhanced alpha-L-iduronidase activity compared to gentamicin alone, leading to a greater reduction of GAG storage in mouse tissues, including the brain. These results demonstrate that NMD attenuation significantly enhances suppression therapy in vivo.


Subject(s)
Nonsense Mediated mRNA Decay , RNA, Messenger/genetics , Animals , Cells, Cultured , Disease Models, Animal , Mice , Mucopolysaccharidosis I/genetics
3.
Free Radic Biol Med ; 50(11): 1679-88, 2011 Jun 01.
Article in English | MEDLINE | ID: mdl-21419218

ABSTRACT

The contribution of nitric oxide (NO) to the pathophysiology of asthma remains incompletely defined despite its established pro- and anti-inflammatory effects. Induction of the inducible nitric oxide synthase (iNOS), arginase, and superoxide pathways is correlated with increased airway hyperresponsiveness in asthmatic subjects. To determine the contributions of these pathways in proximal and distal airways, we compared bronchial wash (BW) to traditional bronchoalveolar lavage (BAL) for measurements of reactive nitrogen/oxygen species, arginase activation, and cytokine/chemokine levels in asthmatic and normal subjects. Levels of NO were preferentially elevated in the BAL, demonstrating higher level NOS activation in the distal airway compartment of asthmatic subjects. In contrast, DHE(+) cells, which have the potential to generate reactive oxygen species, were increased in both proximal and distal airway compartments of asthmatics compared to controls. Different patterns of cytokines and chemokines were observed, with a predominance of epithelial cell-associated mediators in the BW compared to macrophage/monocyte-derived mediators in the BAL of asthmatic subjects. Our study demonstrates differential production of reactive species and soluble mediators within the distal airways compared to the proximal airways in asthma. These results indicate that cellular mechanisms are activated in the distal airways of asthmatics and must be considered in the development of therapeutic strategies for this chronic inflammatory disorder.


Subject(s)
Asthma/metabolism , Bronchi/metabolism , Bronchi/pathology , Nitric Oxide/metabolism , Reactive Oxygen Species/metabolism , Adult , Aged , Arginase/metabolism , Asthma/pathology , Bronchoalveolar Lavage , Cytokines/metabolism , Female , Gene Expression Profiling , Humans , Male , Middle Aged , Nitric Oxide Synthase Type II/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...