Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
Add more filters










Publication year range
1.
Bioconjug Chem ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38913976

ABSTRACT

Investigating cholesterol trafficking pathways continues to be of significant scientific interest owing to its homeostasis being associated with several debilitating cardiovascular and neurodegenerative diseases including atherosclerosis, Niemann-Pick's disease, Alzheimer's disease, and Parkinson's disease. To further our understanding of cholesterol trafficking, it is imperative to develop new fluorescent probes that possess improved photostability, low efflux, and high spatial and temporal resolution for live-cell imaging. In this study, we developed a photoconvertible fluorescent cholesterol analog, Duo-Chol, enabling the improved spatiotemporal fluorescence imaging of the dynamic localization of cholesterol in live cells. This tool provides a unique and powerful approach to interrogating cholesterol dynamics, addressing the limitations of existing methods, and expanding our ability to probe the biological role of sterols in living cells.

2.
bioRxiv ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38766065

ABSTRACT

Biomolecular condensates play pivotal roles in many cellular processes, yet predicting condensate growth dynamics within the complex intracellular environment is challenging. While chromatin mechanics are known to influence condensate coarsening in the nucleus, the effect of condensate properties remains unclear. Our study demonstrates that the interplay between condensate properties and chromatin mechanics dictates condensate growth dynamics. Through chemical dimerization, we induced condensates of various properties in the cell nuclei, revealing distinct growth mechanisms: diffusion-driven or ripening-dominated. To explain experimental observations, we developed a quantitative theory that uncovers the role of chromatin in modulating condensate growth via size-dependent pressure. We find that surface tension is a critical factor in determining whether condensates undergo elastic or Ostwald ripening. Our model predicts that different condensates are affected differently by chromatin heterogeneity, validated by experimentally perturbing chromatin organization. Taken together, our work elucidates how condensate surface tension and chromatin heterogeneity govern nuclear condensate ripening.

3.
J Neurosurg Case Lessons ; 7(10)2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38437672

ABSTRACT

BACKGROUND: Glioneuronal tumors (GNTs) comprise a rare class of central nervous system (CNS) neoplasms with varying degrees of neuronal and glial differentiation that predominately affect children and young adults. Within the current 2021 World Health Organization (WHO) classification of CNS tumors, GNTs encompass 14 distinct tumor types. Recently, the use of whole-genome DNA methylation profiling has allowed more precise classification of this tumor group. OBSERVATIONS: A 3-year-old male presented with a 3-month history of increasing head circumference, regression of developmental milestones, and speech delay. Magnetic resonance imaging of the brain was notable for a large left hemispheric multiseptated mass with significant mass effect and midline shift that was treated with near-total resection. Histological and molecular assessment demonstrated a glioneuronal tumor harboring an MYO5A::NTRK3 fusion. By DNA methylation profiling, this tumor matched to a provisional methylation class known as "glioneuronal tumor kinase-fused" (GNT kinase-fused). The patient was later started on targeted therapy with larotrectinib. LESSONS: This is the first report of an MYO5A::NTRK3 fusion in a pediatric GNT. GNT kinase-fused is a provisional methylation class not currently included in the WHO classification of CNS tumors. This case highlights the impact of thorough molecular characterization of CNS tumors, especially with the increasing availability of novel gene targeting therapies.

4.
Nat Commun ; 15(1): 2165, 2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38461301

ABSTRACT

The telomere repeat-containing RNA (TERRA) forms R-loops to promote homology-directed DNA synthesis in the alternative lengthening of telomere (ALT) pathway. Here we report that TERRA contributes to ALT via interacting with the lysine-specific demethylase 1A (LSD1 or KDM1A). We show that LSD1 localizes to ALT telomeres in a TERRA dependent manner and LSD1 function in ALT is largely independent of its demethylase activity. Instead, LSD1 promotes TERRA recruitment to ALT telomeres via RNA binding. In addition, LSD1 and TERRA undergo phase separation, driven by interactions between the RNA binding properties of LSD1 and the G-quadruplex structure of TERRA. Importantly, the formation of TERRA-LSD1 condensates enriches the R-loop stimulating protein Rad51AP1 and increases TERRA-containing R-loops at telomeres. Our findings suggest that LSD1-TERRA phase separation enhances the function of R-loop regulatory molecules for ALT telomere maintenance, providing a mechanism for how the biophysical properties of histone modification enzyme-RNA interactions impact chromatin function.


Subject(s)
Neoplasms , R-Loop Structures , RNA, Long Noncoding , Telomere Homeostasis , Histone Demethylases/genetics , Histone Demethylases/metabolism , Phase Separation , RNA, Long Noncoding/genetics , Telomere/genetics , Telomere/metabolism , Telomere Homeostasis/genetics , Humans
5.
bioRxiv ; 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38463993

ABSTRACT

Alternative lengthening of telomeres (ALT) pathway maintains telomeres in a significant fraction of cancers associated with poor clinical outcomes. A better understanding of ALT mechanisms can provide a basis for developing new treatment strategies for ALT cancers. SUMO modification of telomere proteins plays a critical role in the formation of ALT telomere-associated PML bodies (APBs), where telomeres are clustered and DNA repair proteins are enriched to promote homology-directed telomere DNA synthesis in ALT. However, whether and how SUMO contributes to ALT beyond APB formation remains elusive. Here, we report that SUMO promotes collaboration among DNA repair proteins to achieve APB-independent telomere maintenance. By using ALT cancer cells with PML protein knocked out and thus devoid of APBs, we show that sumoylation is required for manifesting ALT features, including telomere clustering and telomeric DNA synthesis, independent of PML and APBs. Further, small molecule-induced telomere targeting of SUMO produces signatures of phase separation and ALT features in PML null cells in a manner depending on both sumoylation and SUMO interaction with SUMO interaction motifs (SIMs). Mechanistically, SUMO-induced effects are linked to the enrichment of DNA repair proteins, including Rad52, Rad51AP1, and BLM, to the SUMO-containing telomere foci. Finally, we find that Rad52 can undergo phase separation, enrich SUMO on telomeres, and promote telomere DNA synthesis in collaboration with the BLM helicase in a SUMO-dependent manner. Collectively, our findings suggest that, in addition to forming APBs, SUMO also promotes collaboration among DNA repair proteins to support telomere maintenance in ALT cells. Given the promising effects of sumoylation inhibitors in cancer treatment, our findings suggest their potential use in perturbing telomere maintenance in ALT cancer cells.

6.
Org Lett ; 24(28): 5176-5180, 2022 07 22.
Article in English | MEDLINE | ID: mdl-35816696

ABSTRACT

Forging new C(sp3)-C(sp3) bonds to central positions within a peptide backbone is critical for the development of new therapeutics and chemical probes. Currently, there are no methods for decarboxylating Asp and Glu side chains solid-phase photochemically or using such radicals to form peptide macrocycles. Herein, electron-donor-acceptor complexes between Hantzsch ester and on-resin peptide N-hydroxyphthalimide radical precursors are used to access these radicals, demonstrated with two-carbon homologations and homologation cyclizations of Atosiban and RGDf.


Subject(s)
Esters , Peptides , Cyclization , Peptides/chemistry
7.
Chembiochem ; 23(16): e202200209, 2022 08 17.
Article in English | MEDLINE | ID: mdl-35599237

ABSTRACT

To mimic the levels of spatiotemporal control that exist in nature, tools for chemically induced dimerization (CID) are employed to manipulate protein-protein interactions. Although linker composition is known to influence speed and efficiency of heterobifunctional compounds, modeling or in vitro experiments are often insufficient to predict optimal linker structure. This can be attributed to the complexity of ternary complex formation and the overlapping factors that impact the effective concentration of probe within the cell, such as efflux and passive permeability. Herein, we synthesize a library of modular chemical tools with varying linker structures and perform quantitative microscopy in live cells to visualize dimerization in real-time. We use our optimized probe to demonstrate our ability to recruit a protein of interest (POI) to the mitochondria, cell membrane, and nucleus. Finally, we induce and monitor local and global phase separation. We highlight the importance of quantitative approaches to linker optimization for dynamic systems and introduce new, synthetically accessible tools for the rapid control of protein localization.


Subject(s)
Protein Transport , Cell Membrane , Dimerization
8.
Nat Commun ; 13(1): 2413, 2022 05 06.
Article in English | MEDLINE | ID: mdl-35523781

ABSTRACT

Genetic diseases are often caused by nonsense mutations, but only one TRID (translation readthrough inducing drug), ataluren, has been approved for clinical use. Ataluren inhibits release factor complex (RFC) termination activity, while not affecting productive binding of near-cognate ternary complex (TC, aa-tRNA.eEF1A.GTP). Here we use photoaffinity labeling to identify two sites of ataluren binding within rRNA, proximal to the decoding center (DC) and the peptidyl transfer center (PTC) of the ribosome, which are directly responsible for ataluren inhibition of termination activity. A third site, within the RFC, has as yet unclear functional consequences. Using single molecule and ensemble fluorescence assays we also demonstrate that termination proceeds via rapid RFC-dependent hydrolysis of peptidyl-tRNA followed by slow release of peptide and tRNA from the ribosome. Ataluren is an apparent competitive inhibitor of productive RFC binding, acting at or before the hydrolysis step. We propose that designing more potent TRIDs which retain ataluren's low toxicity should target areas of the RFC binding site proximal to the DC and PTC which do not overlap the TC binding site.


Subject(s)
Protein Biosynthesis , Ribosomes , Oxadiazoles/pharmacology , Peptide Termination Factors/metabolism , RNA, Transfer/metabolism , Ribosomes/metabolism
9.
Matrix Biol ; 109: 19-33, 2022 05.
Article in English | MEDLINE | ID: mdl-35339637

ABSTRACT

TGFß is a key regulator of the dynamic reciprocity between cells and the extracellular matrix that drives physiologic and pathologic responses in both tissue repair and tumor microenvironments. Our studies define type III Collagen (Col3) as a suppressor of scar formation and desmoplasia through its effects, in part, on myofibroblasts. TGFß stimulates activation of myofibroblasts, and here, we demonstrate that cultured Col3-deficient fibroblasts have increased TGFß signaling compared to wild-type fibroblasts. Moreover, kinetic binding studies show that a synthetic peptide containing a Col3 cysteine-rich (CR) domain found within its N-propeptide binds in a dose-dependent manner to TGFß1, while a CR control peptide with mutated cysteines does not, suggesting that Col3 attenuates TGFß signaling in part through the N-propeptide CR domain. Consistent with this hypothesis, the CR peptide attenuates TGFß signaling in fibroblasts and 4T1 breast cancer cells and suppresses fibroblast activation and contraction, as assessed by α-smooth-muscle actin staining, cell wrinkling of deformable silicone, and stressed-fibroblast populated collagen lattice contraction assays. Finally, CR peptide treatment of orthotopically injected breast cancer cells (4T1) suppresses intratumoral fibroblast activation and inhibits primary tumor growth compared to CR control. Treatment with the CR peptide decreases both intratumoral canonical and non-canonical downstream TGFß signaling targets, consistent with its extracellular binding to TGFß. Taken together, our results suggest that the Col3 N-propeptide CR domain binds TGFß1 and attenuates (but importantly does not eliminate) TGFß signaling in fibroblasts and cancer cells. Expanding on our previous work, this study demonstrates an additional mechanism by which Col3 regulates cell behaviors in post-injury and tumor microenvironments and suggests that novel Col3-targeted strategies could effectively control biologic responses in vivo and improve anti-scarring/fibrosis and oncologic therapies.


Subject(s)
Breast Neoplasms , Collagen Type III , Actins/metabolism , Breast Neoplasms/metabolism , Cells, Cultured , Cicatrix/metabolism , Collagen/metabolism , Collagen Type III/metabolism , Cysteine , Female , Fibroblasts/metabolism , Humans , Myofibroblasts/metabolism , Transforming Growth Factor beta/metabolism , Tumor Microenvironment
10.
Bioconjug Chem ; 33(11): 1973-1982, 2022 11 16.
Article in English | MEDLINE | ID: mdl-35285229

ABSTRACT

CD47 on healthy cells, cancer cells, and even engineered particles can inhibit phagocytic clearance by binding SIRPα on macrophages. To mimic and modulate this interaction with peptides that could be used as soluble antagonists or potentially as bioconjugates to surfaces, we made cyclic "nano-Self" peptides based on the key interaction loop of human CD47. Melanoma cells were studied as a standard preclinical cancer model and were antibody-opsonized to adhere to and activate engulfment by primary mouse macrophages. Phagocytosis in the presence of soluble peptides showed cyclic > wildtype > scrambled activity, with the same trend observed with human cells. Opsonized cells that were not engulfed adhered tightly to macrophages, with opposite trends to phagocytosis. Peptide activity is nonetheless higher in human versus mouse assays, consistent with species differences in CD47-SIRPα. Small peptides thus function as soluble antagonists of a major macrophage checkpoint.


Subject(s)
CD47 Antigen , Melanoma , Mice , Animals , Humans , CD47 Antigen/metabolism , Peptides, Cyclic/pharmacology , Peptides, Cyclic/metabolism , Macrophages/metabolism , Phagocytosis , Melanoma/drug therapy , Melanoma/metabolism
11.
Org Lett ; 23(21): 8219-8223, 2021 11 05.
Article in English | MEDLINE | ID: mdl-34648297

ABSTRACT

The compatibility of photochemistry with solid-phase peptide synthesis is demonstrated via photochemical hydroalkylation to form C(sp3)-C(sp3) bonds between on-resin Giese acceptors and redox-active esters. Both iridium-based photocatalysts and Hantszch ester led to high yields, with final reaction conditions producing full conversions within 30 min under ambient conditions. The chemistry is compatible with a broad range of peptide side chains, redox-active esters, and resin. These conditions represent the first example of photochemical peptide modifications on resin.


Subject(s)
Solid-Phase Synthesis Techniques
12.
J Vis Exp ; (170)2021 04 12.
Article in English | MEDLINE | ID: mdl-33900288

ABSTRACT

Chromatin-associated condensates are implicated in many nuclear processes, but the underlying mechanisms remain elusive. This protocol describes a chemically-induced protein dimerization system to create condensates on telomeres. The chemical dimerizer consists of two linked ligands that can each bind to a protein: Halo ligand to Halo-enzyme and trimethoprim (TMP) to E. coli dihydrofolate reductase (eDHFR), respectively. Fusion of Halo enzyme to a telomere protein anchors dimerizers to telomeres through covalent Halo ligand-enzyme binding. Binding of TMP to eDHFR recruits eDHFR-fused phase separating proteins to telomeres and induces condensate formation. Because TMP-eDHFR interaction is non-covalent, condensation can be reversed by using excess free TMP to compete with the dimerizer for eDHFR binding. An example of inducing promyelocytic leukemia (PML) nuclear body formation on telomeres and determining condensate growth, dissolution, localization and composition is shown. This method can be easily adapted to induce condensates at other genomic locations by fusing Halo to a protein that directly binds to the local chromatin or to dCas9 that is targeted to the genomic locus with a guide RNA. By offering the temporal resolution required for single cell live imaging while maintaining phase separation in a population of cells for biochemical assays, this method is suitable for probing both the formation and function of chromatin-associated condensates.


Subject(s)
Escherichia coli Proteins/metabolism , Escherichia coli/enzymology , Protein Multimerization , Telomere/metabolism , Tetrahydrofolate Dehydrogenase/metabolism , Trimethoprim/metabolism , Escherichia coli Proteins/chemistry , Humans , Ligands , Protein Binding , Tetrahydrofolate Dehydrogenase/chemistry , Trimethoprim/chemistry
13.
J Cell Biol ; 220(6)2021 06 07.
Article in English | MEDLINE | ID: mdl-33904910

ABSTRACT

To ensure accurate chromosome segregation, interactions between kinetochores and microtubules are regulated by a combination of mechanics and biochemistry. Tension provides a signal to discriminate attachment errors from bi-oriented kinetochores with sisters correctly attached to opposite spindle poles. Biochemically, Aurora B kinase phosphorylates kinetochores to destabilize interactions with microtubules. To link mechanics and biochemistry, current models regard tension as an input signal to locally regulate Aurora B activity. Here, we show that the outcome of kinetochore phosphorylation depends on tension. Using optogenetics to manipulate Aurora B at individual kinetochores, we find that kinase activity promotes microtubule release when tension is high. Conversely, when tension is low, Aurora B activity promotes depolymerization of kinetochore-microtubules while maintaining attachment. Thus, phosphorylation converts a catch-bond, in which tension stabilizes attachments, to a slip-bond, which releases microtubules under tension. We propose that tension is a signal inducing distinct error-correction pathways, with release or depolymerization being advantageous for typical errors characterized by high or low tension, respectively.


Subject(s)
Aurora Kinase B/metabolism , Kinetochores/physiology , Microtubules/physiology , Mitosis , Tensins/metabolism , Aurora Kinase B/genetics , Chromosome Segregation , HeLa Cells , Humans , Phosphorylation
14.
Front Mol Biosci ; 8: 785160, 2021.
Article in English | MEDLINE | ID: mdl-35174207

ABSTRACT

TERRA, TElomeric Repeat-containing RNA, is a long non-coding RNA transcribed from telomeres. Emerging evidence indicates that TERRA regulates telomere maintenance and chromosome end protection in normal and cancerous cells. However, the mechanism of how TERRA contributes to telomere functions is still unclear, partially owing to the shortage of approaches to track and manipulate endogenous TERRA molecules in live cells. Here, we developed a method to visualize TERRA in live cells via a combination of CRISPR Cas13 RNA labeling and SunTag technology. Single-particle tracking reveals that TERRA foci undergo anomalous diffusion in a manner that depends on the timescale and telomeric localization. Furthermore, we used a chemically-induced protein dimerization system to manipulate TERRA subcellular localization in live cells. Overall, our approaches to monitor and control TERRA locations in live cells provide powerful tools to better understand its roles in telomere maintenance and genomic integrity.

15.
ACS Nano ; 14(11): 15083-15093, 2020 11 24.
Article in English | MEDLINE | ID: mdl-33186026

ABSTRACT

Macrophages engulf "foreign" cells and particles, but phagocytosis of healthy cells and cancer cells is inhibited by expression of the ubiquitous membrane protein CD47 which binds SIRPα on macrophages to signal "self". Motivated by some clinical efficacy of anti-CD47 against liquid tumors and based on past studies of CD47-derived polypeptides on particles that inhibited phagocytosis of the particles, here we design soluble, multivalent peptides to bind and block SIRPα. Bivalent and tetravalent nano-Self peptides prove more potent (Keff ∼ 10 nM) than monovalent 8-mers as agonists for phagocytosis of antibody opsonized cells, including cancer cells. Multivalent peptides also outcompete soluble CD47 binding to human macrophages, consistent with SIRPα binding, and the peptides suppress phosphotyrosine in macrophages, consistent with inhibition of SIRPα's "self" signaling. Peptides exhibit minimal folding, but functionality suggests an induced fit into SIRPα's binding pocket. Pre-clinical studies in mice indicate safety, with no anemia that typifies clinical infusions of anti-CD47. Multivalent nano-Self peptides thus constitute an alternative approach to promoting phagocytosis of "self", including cancer cells targeted clinically.


Subject(s)
Antigens, Differentiation , Receptors, Immunologic , Animals , CD47 Antigen , Macrophages , Mice , Peptides , Phagocytosis
16.
ACS Chem Biol ; 15(9): 2374-2381, 2020 09 18.
Article in English | MEDLINE | ID: mdl-32804474

ABSTRACT

RNA is emerging as a valuable target for the development of novel therapeutic agents. The rational design of RNA-targeting small molecules, however, has been hampered by the relative lack of methods for the analysis of small molecule-RNA interactions. Here, we present our efforts to develop such a platform using photoaffinity labeling. This technique, termed Photoaffinity Evaluation of RNA Ligation-Sequencing (PEARL-seq), enables the rapid identification of small molecule binding locations within their RNA targets and can provide information on ligand selectivity across multiple different RNAs. These data, when supplemented with small molecule SAR data and RNA probing data enable the construction of a computational model of the RNA-ligand structure, thereby enabling the rational design of novel RNA-targeted ligands.


Subject(s)
Azides/chemistry , Diazomethane/analogs & derivatives , Photoaffinity Labels/chemistry , RNA/metabolism , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/metabolism , Azides/metabolism , Azides/radiation effects , Binding Sites , Diazomethane/metabolism , Diazomethane/radiation effects , Ligands , Molecular Docking Simulation , Photoaffinity Labels/metabolism , Photoaffinity Labels/radiation effects , Proof of Concept Study , RNA/chemistry , Reverse Transcription , Sequence Analysis, DNA
17.
Org Biomol Chem ; 18(30): 5747-5763, 2020 08 05.
Article in English | MEDLINE | ID: mdl-32691820

ABSTRACT

Fluorescent small molecules are powerful tools for visualizing biological events, embodying an essential facet of chemical biology. Since the discovery of the first organic fluorophore, quinine, in 1845, both synthetic and theoretical efforts have endeavored to "modulate" fluorescent compounds. An advantage of synthetic dyes is the ability to employ modern organic chemistry strategies to tailor chemical structures and thereby rationally tune photophysical properties and functionality of the fluorophore. This review explores general factors affecting fluorophore excitation and emission spectra, molar absorption, Stokes shift, and quantum efficiency; and provides guidelines for chemist to create novel probes. Structure-property relationships concerning the substituents are discussed in detail with examples for several dye families. We also present a survey of functional probes based on PeT, FRET, and environmental or photo-sensitivity, focusing on representative recent work in each category. We believe that a full understanding of dyes with diverse chemical moieties enables the rational design of probes for the precise interrogation of biochemical and biological phenomena.


Subject(s)
Fluorescent Dyes
18.
Methods Enzymol ; 641: xix-xx, 2020.
Article in English | MEDLINE | ID: mdl-32713540
19.
Methods Enzymol ; 640: 309-326, 2020.
Article in English | MEDLINE | ID: mdl-32560804

ABSTRACT

Small molecule probes are essential tools for biomedical applications, with utility as cellular stains, labels for biomolecules, environmental indicators, and biosensors. However, a fluorophore's characteristics are difficult to predict solely through calculations or rational design, making the development of a core scaffold that is amenable to late stage functionalization particularly desirable. In this chapter, we describe the synthesis and application of a tunable quinoline scaffold that can be readily functionalized and optimized for a variety of imaging applications. We present a facile synthesis that results in three functional domains that influence the compound's photophysical properties, structural diversity, and polarization. We demonstrate a method with which to study the scaffold's tunable photophysical properties as a result of its structure and environment, and finally exhibit its utility in pH sensitive, live-cell imaging.


Subject(s)
Biosensing Techniques , Quinolines , Fluorescent Dyes
20.
Methods Enzymol ; 640: xv-xvi, 2020.
Article in English | MEDLINE | ID: mdl-32560808
SELECTION OF CITATIONS
SEARCH DETAIL
...