Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Arterioscler Thromb Vasc Biol ; 39(8): 1645-1651, 2019 08.
Article in English | MEDLINE | ID: mdl-31167564

ABSTRACT

OBJECTIVE: MARK4 (microtubule affinity-regulating kinase 4) regulates NLRP3 (nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain containing 3) inflammasome activation. The aim of the study is to examine the role of MARK4 in hematopoietic cells during atherosclerosis. METHODS AND RESULTS: We show increased MARK4 expression in human atherosclerotic lesions compared with adjacent areas. MARK4 is coexpressed with NLRP3, and they colocalize in areas enriched in CD68-positive but α-SMA (α-smooth muscle actin)-negative cells. Expression of MARK4 and NLRP3 in the atherosclerotic lesions is associated with the production of active IL (interleukin)-1ß and IL-18. To directly assess the role of hematopoietic MARK4 in NLRP3 inflammasome activation and atherosclerotic plaque formation, Ldlr (low-density lipoprotein receptor)-deficient mice were lethally irradiated and reconstituted with either wild-type or Mark4-deficient bone marrow cells, and were subsequently fed a high-fat diet and cholesterol diet for 9 weeks. Mark4 deficiency in bone marrow cells led to a significant reduction of lesion size, together with decreased circulating levels of IL-18 and IFN-γ (interferon-γ). Furthermore, Mark4 deficiency in primary murine bone marrow-derived macrophages prevented cholesterol crystal-induced NLRP3 inflammasome activation, as revealed by reduced caspase-1 activity together with reduced production of IL-1ß and IL-18. CONCLUSIONS: MARK4-dependent NLRP3 inflammasome activation in the hematopoietic cells regulates the development of atherosclerosis.


Subject(s)
Atherosclerosis/etiology , Inflammasomes/physiology , NLR Family, Pyrin Domain-Containing 3 Protein/physiology , Protein Serine-Threonine Kinases/physiology , Aged , Aged, 80 and over , Animals , Cells, Cultured , Humans , Interleukin-18/physiology , Male , Mice , Mice, Inbred C57BL , Middle Aged , Receptors, LDL/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...