Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Endocrinol Metab ; 103(9): 3376-3385, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29947765

ABSTRACT

Context: Müllerian-inhibiting substance/anti-Müllerian hormone (MIS/AMH) is produced in the ovarian granulosa cells, and it is believed to inhibit ovarian folliculogenesis and steroidogenesis in women of reproductive age. Objective: To investigate the expression of MIS/AMH type II receptor (MISRII/AMHRII) that binds MIS/AMH in the ovaries of reproductive-age women; to identify the exact targets of MIS/AMH. Design: Laboratory study using human ovarian tissue. Setting: University hospital. Patients: Tissue samples from 25 patients who had undergone ovarian surgery. Interventions: The segregation of ovarian granulosa and theca cells by laser microdissection was followed by RT-PCR, analyzing MISRII/AMHRII mRNA expression. Afterward, in situ hybridization and immunohistochemistry were performed to determine the localization of MISRII/AMHRII mRNA and protein expression. Main Outcome Measures: MISRII/AMHRII mRNA expression by RT-PCR, in situ hybridization, and immunohistochemistry. Results: MISRII/AMHRII were expressed in granulosa and theca cells of preantral and antral follicles. The granulosa cells showed stronger MISRII/AMHRII expression than theca cells. MISRII/AMHRII mRNA staining of granulosa and theca cells in large antral follicles, early atretic follicles, and corpus luteum waned but were still detected weakly, showing higher expression in theca cells than in granulosa cells. However, MISRII/AMHRII protein in the granulosa layer of the atretic follicle and corpus luteum could not be assessed. Conclusions: As MISRII/AMHRII is expressed in both granulosa and theca cells, this indicates that MIS/AMH, produced in the granulosa cells, is active in the theca cells as well. MIS/AMH is most likely actively involved not only in the autocrine and endocrine processes but also in the paracrine processes involving theca cells.


Subject(s)
Anti-Mullerian Hormone/metabolism , Ovary/cytology , Receptors, Peptide/metabolism , Receptors, Transforming Growth Factor beta/metabolism , Theca Cells/metabolism , Adult , Corpus Luteum/metabolism , Female , Granulosa Cells/metabolism , Humans , Ovarian Follicle/metabolism , Ovary/metabolism
2.
J Am Chem Soc ; 137(13): 4358-67, 2015 Apr 08.
Article in English | MEDLINE | ID: mdl-25785725

ABSTRACT

The mitochondrial pool of Hsp90 and its mitochondrial paralogue, TRAP1, suppresses cell death and reprograms energy metabolism in cancer cells; therefore, Hsp90 and TRAP1 have been suggested as target proteins for anticancer drug development. Here, we report that the actual target protein in cancer cell mitochondria is TRAP1, and current Hsp90 inhibitors cannot effectively inactivate TRAP1 because of their insufficient accumulation in the mitochondria. To develop mitochondrial TRAP1 inhibitors, we determined the crystal structures of human TRAP1 complexed with Hsp90 inhibitors. The isopropyl amine of the Hsp90 inhibitor PU-H71 was replaced with the mitochondria-targeting moiety triphenylphosphonium to produce SMTIN-P01. SMTIN-P01 showed a different mode of action from the nontargeted PU-H71, as well as much improved cytotoxicity to cancer cells. In addition, we determined the structure of a TRAP1-adenylyl-imidodiphosphate (AMP-PNP) complex. On the basis of comparative analysis of TRAP1 structures, we propose a molecular mechanism of ATP hydrolysis that is crucial for chaperone function.


Subject(s)
Benzodioxoles/chemistry , Benzodioxoles/pharmacology , Drug Design , HSP90 Heat-Shock Proteins/antagonists & inhibitors , HSP90 Heat-Shock Proteins/chemistry , Mitochondria/drug effects , Purines/chemistry , Purines/pharmacology , Amines/chemistry , Cell Line, Tumor , Crystallography, X-Ray , Humans , Mitochondria/metabolism , Models, Molecular , Organophosphorus Compounds/chemistry , Protein Multimerization , Protein Stability , Protein Structure, Quaternary
SELECTION OF CITATIONS
SEARCH DETAIL
...