Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Food Res Int ; 190: 114584, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945604

ABSTRACT

Levilactobacillus brevis is crucial in food fermentation, particularly in sourdough production. However, the cultivation of L. brevis faces a challenge with accumulation of lactic acid, a major inhibitor. We aimed to increase the acid tolerance of L. brevis, an industrial strain for sourdough fermentation. We used the adaptive laboratory evolution (ALE) to obtain lactic acid tolerant strains. The evolved strain's fermentation and metabolite profiles, alongside sensory evaluation, were compared with the parental strain by using various analytical techniques. The ALE approach increased lactic acid tolerance in the evolved strain showing an increased growth rate by 1.1 and 1.9 times higher than the parental strain at pH 4.1 and 6.5, respectively. Comprehensive analyses demonstrated its potential application in sourdough fermentation, promising reduced downstream costs. The evolved strain, free from genetically modified organisms concerns, has great potential for industrial use by exhibiting enhanced growth in acidic conditions without affecting consumers' bread preferences.


Subject(s)
Bread , Fermentation , Food Microbiology , Lactic Acid , Levilactobacillus brevis , Bread/microbiology , Levilactobacillus brevis/metabolism , Levilactobacillus brevis/growth & development , Hydrogen-Ion Concentration , Lactic Acid/metabolism , Taste , Humans
2.
NPJ Sci Food ; 7(1): 18, 2023 May 09.
Article in English | MEDLINE | ID: mdl-37160919

ABSTRACT

We previously proposed the Gut Microbiome Wellness Index (GMWI), a predictor of disease presence based on a gut microbiome taxonomic profile. As an application of this index for food science research, we applied GMWI as a quantitative tool for measuring the prebiotic effect of oligosaccharides. Mainly, in an in vitro anaerobic batch fermentation system, fructooligosaccharides (FOS), galactooligosaccharides (GOS), xylooligosaccharides (XOS), inulin (IN), and 2'-fucosyllactose (2FL), were mixed separately with fecal samples obtained from healthy adult volunteers. To find out how 24 h prebiotic fermentation influenced the GMWI values in their respective microbial communities, changes in species-level relative abundances were analyzed in the five prebiotics groups, as well as in two control groups (no substrate addition at 0 h and for 24 h). The GMWI of fecal microbiomes treated with any of the five prebiotics (IN (0.48 ± 0.06) > FOS (0.47 ± 0.03) > XOS (0.33 ± 0.02) > GOS (0.26 ± 0.02) > 2FL (0.16 ± 0.06)) were positive, which indicates an increase of relative abundances of microbial species previously found to be associated with a healthy, disease-free state. In contrast, the GMWI of samples without substrate addition for 24 h (-0.60 ± 0.05) reflected a non-healthy, disease-harboring microbiome state. Compared to the original prebiotic index (PI) and α-diversity metrics, GMWI provides a more data-driven, evidence-based indexing system for evaluating the prebiotic effect of food components. This study demonstrates how GMWI can be applied as a novel PI in dietary intervention studies, with wider implications for designing personalized diets based on their impact on gut microbiome wellness.

3.
FEMS Microbiol Ecol ; 99(2)2023 01 24.
Article in English | MEDLINE | ID: mdl-36623850

ABSTRACT

Fructooligosaccharides (FOS), Ad-fructooligosaccharides (Ad-FOS), resistant maltodextrin (RMD), and maltooligosaccharides (MOS) are commercially available prebiotic oligosaccharides. In this study, the effects of prebiotics on the human gut microbial ecosystem were evaluated using an in vitro gut model. FOS and Ad-FOS showed tolerance to digestion, whereas RMD and MOS showed moderate digestion by digestive enzymes. In in vitro fecal fermentation, Bifidobacterium spp. increased in the following order: FOS, Ad-FOS, MOS, and RMD, whereas Bacteroides spp. increased in RMD medium. Bacteroides xylanisolvens exhibited cross-feeding by enabling the growth of other beneficial bacteria during co-culture in RMD medium. In metabolome analysis, total short-chain fatty acids (SCFAs) were highly produced in the following order: RMD, FOS, MOS, and Ad-FOS; acetate in the order of FOS, MOS/RMD, and Ad-FOS; butyrate in the order of RMD, MOS, FOS, and Ad-FOS; and propionate only in RMD. In addition, the conversion of betaine to trimethylamine was rarely affected in the following order: MOS, RMD, FOS, and Ad-FOS. Lastly, the four oligosaccharides inhibited the adhesion of pathogenic Escherichia coli to human epithelial cells to a similar extent. The comparative analysis results obtained in this study will provide comprehensive information of these substances to manufacturers and customers.


Subject(s)
Microbiota , Prebiotics , Humans , Oligosaccharides/pharmacology , Feces/microbiology , Metabolome , Fermentation
4.
Food Funct ; 13(3): 1256-1267, 2022 Feb 07.
Article in English | MEDLINE | ID: mdl-35023534

ABSTRACT

The aim of this study was to investigate the prebiotic activities of dextran (LM742) produced by Leuconostoc mesenteroides SPCL742 in the aspect of the human gut microbial ecosystem focusing on microbiome and metabolome changes in in vitro colonic fermentation. LM742 dextran had a medium-chain structure with the molecular weight of 1394.87 kDa (DP = 7759.22) and α-1,6 and α-1,3 linkages with a 26.11 : 1 ratio. The LM742 dextran was resistent to digestive enzymes in the human gastrointestinal conditions. The individual cultivation of 30 intestinal bacteria with LM742 dextran showed the growth of Bacteroides spp., whereas in vitro human fecal fermentation with LM742 exhibited the symbiotic growth of Bacteroides spp. and beneficial bacteria such as Bifidobacterium spp. Further co-cultivation of Bacteroides xylanisolvens and several probiotics indicated that B. xylanisolvens provides a cross-feeding of dextran to probiotics. In fecal fermentation, LM742 dextran resulted in increased concentrations of short-chain fatty acids, valerate and pantothenate, but it rarely affected the conversion of betaine to trimethylamine. Lastly, LM742 dextran inhibited the adhesion of pathogenic E. coli to human epithelial cells. Taken together, these results demonstrate the prebiotic potential of LM742 dextran as a health-beneficial polysaccharide in the human intestine.


Subject(s)
Dextrans/metabolism , Gastrointestinal Microbiome , Leuconostoc mesenteroides/metabolism , Prebiotics/microbiology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...