Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Radiol Open ; 10(2): 2058460120988097, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33786201

ABSTRACT

BACKGROUND: The pathology of Parkinson's disease leads to morphological changes in brain structure. Currently, the progressive changes in gray matter volume that occur with time and are specific to patients with Parkinson's disease, compared to healthy controls, remain unclear. High-tesla magnetic resonance imaging might be useful in differentiating neurological disorders by brain cortical changes. PURPOSE: We aimed to investigate patterns in gray matter changes in patients with Parkinson's disease by using an automated segmentation method with 7-tesla magnetic resonance imaging. MATERIAL AND METHODS: High-resolution T1-weighted 7 tesla magnetic resonance imaging volumes of 24 hemispheres were acquired from 12 Parkinson's disease patients and 12 age- and sex-matched healthy controls with median ages of 64.5 (range, 41-82) years and 60.5 (range, 25-74) years, respectively. Subgroup analysis was performed according to whether axial motor symptoms were present in the Parkinson's disease patients. Cortical volume, cortical thickness, and subcortical volume were measured using a high-resolution image processing technique based on the Desikan-Killiany-Tourville atlas and an automated segmentation method (FreeSurfer version 6.0). RESULTS: After cortical reconstruction, in 7 tesla magnetic resonance imaging volume segmental analysis, compared with the healthy controls, the Parkinson's disease patients showed global cortical atrophy, mostly in the prefrontal area (rostral middle frontal, superior frontal, inferior parietal lobule, medial orbitofrontal, rostral anterior cingulate area), and subcortical volume atrophy in limbic/paralimbic areas (fusiform, hippocampus, amygdala). CONCLUSION: We first demonstrated that 7 tesla magnetic resonance imaging detects structural abnormalities in Parkinson's disease patients compared to healthy controls using an automated segmentation method. Compared with the healthy controls, the Parkinson's disease patients showed global prefrontal cortical atrophy and hippocampal area atrophy.

SELECTION OF CITATIONS
SEARCH DETAIL
...