Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 16(2): 592-603, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38058198

ABSTRACT

Luminescent colloidal silicon quantum dots (SiQDs) are sustainable alternatives to metal-based QDs for various optical applications. While the materials are reliant on their photoluminescence efficiency, the relationship between the structure and photostability of SiQDs is yet to be well studied. An amorphous silicon (a-Si) shell was recently discovered in SiQDs prepared by thermally-processed silicon oxides. As a-Si is known as a source of defects upon UV irradiation, the disordered shell could potentially have an adverse effect on the optical properties of nanoparticles. Herein, the photostability of ∼5 nm diameter SiQDs with an amorphous shell was compared with that of over-etched SiQDs of equivalent dimensions that bore an a-Si shell of negligible thickness. An UV-induced degradation study was conducted by subjecting toluene solutions of SiQDs to 365 nm light-emitting diodes (LEDs) under an inert atmosphere for predetermined times up to 72 hours. The structure, composition, and optical responses of the exposed SiQDs were evaluated.

2.
Nanoscale ; 15(30): 12492-12505, 2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37449921

ABSTRACT

Silicon nanocrystals (SiNCs) are a promising material for applications in bioanalysis and imaging. Compared to other types of semiconductor nanocrystals, the development and characterization of energy transfer (ET) configurations with SiNCs has been far more limited, resulting in an equally limited understanding of this process and its SiNC-specific nuances. Here, we present a systematic and detailed study of ET between SiNCs and dyes. A combination of spectroelectrophoresis and time-gated and time-resolved photoluminescence measurements were used to characterize the photophysical properties of ensembles of SiNCs and gain insight into how these properties varied as a function of nanocrystal size. ET between SiNC donors and a series of non-fluorescent Black Hole Quencher (BHQ) dyes and fluorescent sulfo-Cyanine 5.5 dye acceptors was evaluated in terms of spectral properties, wavelength-resolved efficiencies, trends with spectral overlap integral, and differences between two methods of BHQ association with the SiNCs. The overall results were consistent with a Förster resonance energy transfer (FRET) mechanism where the polydispersity of the SiNCs had a significant impact on the observed ET: the choice of wavelength and timing parameters were important, and ensemble measurements represented an average of heterogeneous ET behaviors. Prospective advantages and disadvantages of SiNCs as ET donors are discussed. This study serves as a foundation for the continued and optimized development of ET configurations with SiNCs.

3.
ACS Nano ; 15(11): 18429-18436, 2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34757719

ABSTRACT

Sensitizing crystalline silicon (c-Si) with an infrared-sensitive material, such as lead sulfide (PbS) colloidal quantum dots (CQDs), provides a straightforward strategy for enhancing the infrared-light sensitivity of a Si-based photodetector. However, it remains challenging to construct a high-efficiency photodetector based upon a Si:CQD heterojunction. Herein, we demonstrate that Si surface passivation is crucial for building a high-performance Si:CQD heterojunction photodetector. We have studied one-step methyl iodine (CH3I) and two-step chlorination/methylation processes for Si surface passivation. Transient photocurrent (TPC) and transient photovoltage (TPV) decay measurements reveal that the two-step passivated Si:CQD interface exhibits fewer trap states and decreased recombination rates. These passivated substrates were incorporated into prototype Si:CQD infrared photodiodes, and the best performance photodiode based upon the two-step passivation shows an external quantum efficiency (EQE) of 31% at 1280 nm, which represents a near 2-fold increase over the standard device based upon the one-step CH3I passivated Si.

4.
Nanoscale ; 13(43): 18281-18292, 2021 Nov 11.
Article in English | MEDLINE | ID: mdl-34714905

ABSTRACT

Doped silicon nanocrystals (SiNCs) are promising materials that could find use in a wide variety of applications. Realizing methods to tailor the surface chemistry of these particles offers greater tunability of the material properties as well as broader solvent compatibility. Herein, we report organic-soluble B-doped SiNCs prepared via a thermal processing method followed by phosphorus pentachloride etching induced functionalization with alkoxy ligands of varied chain lengths. This approach provides a scalable route to solution processable B-doped SiNCs and establishes a potential avenue for the functionalization of other doped SiNCs.

5.
Nanoscale ; 13(39): 16379-16404, 2021 Oct 14.
Article in English | MEDLINE | ID: mdl-34492675

ABSTRACT

Silicon nanoparticles (SiNPs) can be challenging to prepare with defined size, crystallinity, composition, and surface chemistry. As is the case for any nanomaterial, controlling these parameters is essential if SiNPs are to realize their full potential in areas such as alternative energy generation and storage, sensors, and medical imaging. Numerous teams have explored and established innovative synthesis methods, as well as surface functionalization protocols to control these factors. Furthermore, substantial effort has been expended to understand how the abovementioned parameters influence material properties. In the present review we provide a commentary highlighting the benefits and limitations of available methods for preparing silicon nanoparticles as well as demonstrations of tailoring optical and electronic properties through definition of structure (i.e., crystalline vs. amorphous), composition and surface chemistry. Finally, we highlight potential opportunities for future SiNP studies.

6.
ACS Appl Mater Interfaces ; 13(23): 27149-27158, 2021 Jun 16.
Article in English | MEDLINE | ID: mdl-33983697

ABSTRACT

Luminescent silicon nanoparticles have been widely recognized as an alternative for metal-based quantum dots (QDs) for optoelectronics partly because of the high abundance and biocompatibility of silicon. To date, the broad photoluminescence line width (often >100 nm) of silicon QDs has been a hurdle to achieving competitive spectral purity and incorporating them into light-emitting devices. Herein we report fabrication and testing of straightforward configuration of Fabry-Pérot resonators that incorporates a thin layer of SiQD-polymer hybrid/blend between two reflective silver mirrors; remarkably these devices exhibit up-to-14-fold narrowing of SiQD emission and achieve a spectral bandwidth as narrow as ca. 9 nm. Our polymer-based, SiQD-containing Fabry-Pérot resonators also provide convenient spectral tunability, can be prepared using a variety of polymer hosts and substrates, and enable rigid as well as flexible devices.

7.
Langmuir ; 34(32): 9418-9423, 2018 08 14.
Article in English | MEDLINE | ID: mdl-30021442

ABSTRACT

We introduce a straightforward and cost-effective water-assisted approach to transfer patterns of nanomaterials onto diverse substrates. The transfer method relies on the hydrophobic effect and utilizes a water-soluble polymer film as a carrier to transfer hydrophobic nanomaterials from a patterned source substrate onto a target substrate. Using this approach, nanomaterials are transferred readily from solutions onto surfaces of various shapes and compositions with high fidelity for feature sizes approaching 10 microns.

SELECTION OF CITATIONS
SEARCH DETAIL
...